Documentation

Mathlib.MeasureTheory.Category.MeasCat

The category of measurable spaces #

Measurable spaces and measurable functions form a (concrete) category MeasCat.

Main definitions #

Tags #

measurable space, giry monad, borel

structure MeasCat :
Type (u + 1)

The category of measurable spaces and measurable functions.

Instances For
    theorem MeasCat.coe_of (X : Type u) [MeasurableSpace X] :
    { carrier := X, str := inst✝ }.carrier = X
    Equations
    • One or more equations did not get rendered due to their size.
    Equations
    Equations
    • One or more equations did not get rendered due to their size.

    Measure X is the measurable space of measures over the measurable space X. It is the weakest measurable space, s.t. fun μ ↦ μ s is measurable for all measurable sets s in X. An important purpose is to assign a monadic structure on it, the Giry monad. In the Giry monad, the pure values are the Dirac measure, and the bind operation maps to the integral: (μ >>= ν) s = ∫ x. (ν x) s dμ.

    In probability theory, the MeasCat-morphisms X → Prob X are (sub-)Markov kernels (here Prob is the restriction of Measure to (sub-)probability space.)

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The Giry monad, i.e. the monadic structure associated with Measure.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        An example for an algebra on Measure: the nonnegative Lebesgue integral is a hom, behaving nicely under the monad operations.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          Equations
          • One or more equations did not get rendered due to their size.
          @[reducible, inline]

          The Borel functor, the canonical embedding of topological spaces into measurable spaces.

          Equations
          Instances For