Iterations of a function #
In this file we prove simple properties of Nat.iterate f n a.k.a. f^[n]:
- iterate_zero,- iterate_succ,- iterate_succ',- iterate_add,- iterate_mul: formulas for- f^[0],- f^[n+1](two versions),- f^[n+m], and- f^[n*m];
- iterate_id:- id^[n]=id;
- Injective.iterate,- Surjective.iterate,- Bijective.iterate: iterates of an injective/surjective/bijective function belong to the same class;
- LeftInverse.iterate,- RightInverse.iterate,- Commute.iterate_left,- Commute.iterate_right,- Commute.iterate_iterate: some properties of pairs of functions survive under iterations
- iterate_fixed,- Function.Semiconj.iterate_*,- Function.Semiconj₂.iterate: if- ffixes a point (resp., semiconjugates unary/binary operations), then so does- f^[n].
Iterate a function.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A recursor for the iterate of a function.
Equations
- Function.Iterate.rec motive arg app 0 = arg
- Function.Iterate.rec motive arg app m.succ = Function.Iterate.rec motive (app a arg) app m