Documentation

Mathlib.GroupTheory.Subgroup.Simple

Simple groups #

This file defines IsSimpleGroup G, a class indicating that a group has exactly two normal subgroups.

Main definitions #

Tags #

subgroup, subgroups

class IsSimpleGroup (G : Type u_1) [Group G] extends Nontrivial G :

A Group is simple when it has exactly two normal Subgroups.

Instances
    theorem isSimpleGroup_iff (G : Type u_1) [Group G] :
    IsSimpleGroup G Nontrivial G ∀ (H : Subgroup G), H.NormalH = H =
    class IsSimpleAddGroup (A : Type u_2) [AddGroup A] extends Nontrivial A :

    An AddGroup is simple when it has exactly two normal AddSubgroups.

    Instances
      theorem Subgroup.Normal.eq_bot_or_eq_top {G : Type u_1} [Group G] [IsSimpleGroup G] {H : Subgroup G} (Hn : H.Normal) :
      H = H =
      theorem Subgroup.isSimpleGroup_iff {G : Type u_1} [Group G] {H : Subgroup G} :
      IsSimpleGroup H H H'H, (H'.subgroupOf H).NormalH' = H' = H
      theorem AddSubgroup.isSimpleAddGroup_iff {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
      IsSimpleAddGroup H H H'H, (H'.addSubgroupOf H).NormalH' = H' = H
      theorem MulEquiv.isSimpleGroup {G : Type u_1} [Group G] {H : Type u_3} [Group H] [IsSimpleGroup H] (e : G ≃* H) :
      theorem MulEquiv.isSimpleGroup_congr {G : Type u_1} [Group G] {H : Type u_3} [Group H] (e : G ≃* H) :