The set lattice and (pre)images of functions #
This file contains lemmas on the interaction between the indexed union/intersection of sets
and the image and preimage operations: Set.image, Set.preimage, Set.image2, Set.kernImage.
It also covers Set.MapsTo, Set.InjOn, Set.SurjOn, Set.BijOn.
In order to accommodate Set.image2, the file includes results on union/intersection in products.
Naming convention #
In lemma names,
- ⋃ i, s iis called- iUnion
- ⋂ i, s iis called- iInter
- ⋃ i j, s i jis called- iUnion₂. This is an- iUnioninside an- iUnion.
- ⋂ i j, s i jis called- iInter₂. This is an- iInterinside an- iInter.
- ⋃ i ∈ s, t iis called- biUnionfor "bounded- iUnion". This is the special case of- iUnion₂where- j : i ∈ s.
- ⋂ i ∈ s, t iis called- biInterfor "bounded- iInter". This is the special case of- iInter₂where- j : i ∈ s.
Notation #
- ⋃:- Set.iUnion
- ⋂:- Set.iInter
- ⋃₀:- Set.sUnion
- ⋂₀:- Set.sInter
theorem
Set.image_preimage
{α : Type u_1}
{β : Type u_2}
{f : α → β}
 :
GaloisConnection (image f) (preimage f)
theorem
Set.preimage_kernImage
{α : Type u_1}
{β : Type u_2}
{f : α → β}
 :
GaloisConnection (preimage f) (kernImage f)
Bounded unions and intersections #
Lemmas about Set.MapsTo #
restrictPreimage #
InjOn #
theorem
Set.image_iInter
{α : Type u_1}
{β : Type u_2}
{ι : Sort u_5}
{f : α → β}
(hf : Function.Bijective f)
(s : ι → Set α)
 :
SurjOn #
BijOn #
image, preimage #
theorem
Set.image2_eq_iUnion
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
(f : α → β → γ)
(s : Set α)
(t : Set β)
 :
The Set.image2 version of Set.image_eq_iUnion