Documentation

Mathlib.CategoryTheory.Dialectica.Monoidal

The Dialectica category is symmetric monoidal #

We show that the category Dial has a symmetric monoidal category structure.

The object X ⊗ Y in the Dial C category just tuples the left and right components.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    def CategoryTheory.Dial.tensorHomImpl {C : Type u} [Category.{v, u} C] [Limits.HasFiniteProducts C] [Limits.HasPullbacks C] {X₁ X₂ Y₁ Y₂ : Dial C} (f : X₁ X₂) (g : Y₁ Y₂) :
    X₁.tensorObjImpl Y₁ X₂.tensorObjImpl Y₂

    The functorial action of X ⊗ Y in Dial C.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.Dial.tensorHomImpl_f {C : Type u} [Category.{v, u} C] [Limits.HasFiniteProducts C] [Limits.HasPullbacks C] {X₁ X₂ Y₁ Y₂ : Dial C} (f : X₁ X₂) (g : Y₁ Y₂) :

      The unit for the tensor X ⊗ Y in Dial C.

      Equations
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        @[simp]
        theorem CategoryTheory.Dial.tensorHom_f {C : Type u} [Category.{v, u} C] [Limits.HasFiniteProducts C] [Limits.HasPullbacks C] {X₁✝ Y₁✝ X₂✝ Y₂✝ : Dial C} (f : X₁✝ Y₁✝) (g : X₂✝ Y₂✝) :
        theorem CategoryTheory.Dial.tensor_comp {C : Type u} [Category.{v, u} C] [Limits.HasFiniteProducts C] [Limits.HasPullbacks C] {X₁ Y₁ Z₁ X₂ Y₂ Z₂ : Dial C} (f₁ : X₁ Y₁) (f₂ : X₂ Y₂) (g₁ : Y₁ Z₁) (g₂ : Y₂ Z₂) :
        Equations
        • One or more equations did not get rendered due to their size.