Arithmetic-geometric sequences #
An arithmetic-geometric sequence is a sequence defined by the recurrence relation
u (n + 1) = a * u n + b.
Main definitions #
- arithGeom a b u₀: arithmetic-geometric sequence with starting value- u₀and recurrence relation- u (n + 1) = a * u n + b.
Main statements #
- arithGeom_eq: for- a ≠ 1,- arithGeom a b u₀ n = a ^ n * (u₀ - (b / (1 - a))) + b / (1 - a)
- tendsto_arithGeom_atTop_of_one_lt: if- 1 < aand- b / (1 - a) < u₀, then- arithGeom a b u₀ ntends to- +∞as- ntends to- +∞.- tendsto_arithGeom_nhds_of_lt_one: if- 0 ≤ a < 1, then- arithGeom a b u₀ ntends to- b / (1 - a)as- ntends to- +∞.
- arithGeom_strictMono: if- 1 < aand- b / (1 - a) < u₀, then- arithGeom a b u₀is strictly monotone.
theorem
arithGeom_strictMono
{R : Type u_1}
{a b u₀ : R}
[Field R]
[LinearOrder R]
[IsStrictOrderedRing R]
(ha : 1 < a)
(h0 : b / (1 - a) < u₀)
 :
StrictMono (arithGeom a b u₀)
theorem
tendsto_arithGeom_atTop_of_one_lt
{R : Type u_1}
{a b u₀ : R}
[Field R]
[LinearOrder R]
[IsStrictOrderedRing R]
[Archimedean R]
(ha : 1 < a)
(h0 : b / (1 - a) < u₀)
 :
Filter.Tendsto (arithGeom a b u₀) Filter.atTop Filter.atTop
theorem
tendsto_arithGeom_nhds_of_lt_one
{R : Type u_1}
{a b u₀ : R}
[Field R]
[LinearOrder R]
[IsStrictOrderedRing R]
[Archimedean R]
[TopologicalSpace R]
[OrderTopology R]
(ha_pos : 0 ≤ a)
(ha : a < 1)
 :
Filter.Tendsto (arithGeom a b u₀) Filter.atTop (nhds (b / (1 - a)))