Definition of mulExpNegMulSq and properties #
mulExpNegMulSq is the mapping fun (ε : ℝ) (x : ℝ) => x * Real.exp (- (ε * x * x)). By
composition, it can be used to transform a function g : E → ℝ into a bounded function
mulExpNegMulSq ε ∘ g : E → ℝ = fun x => g x * Real.exp (-ε * g x * g x) with useful
boundedness and convergence properties.
Main Properties #
- abs_mulExpNegMulSq_le: For fixed- ε > 0, the mapping- x ↦ mulExpNegMulSq ε xis bounded by- Real.sqrt ε⁻¹;
- tendsto_mulExpNegMulSq: For fixed- x : ℝ, the mapping- mulExpNegMulSq ε xconverges pointwise to- xas- ε → 0;
- lipschitzWith_one_mulExpNegMulSq: For fixed- ε > 0, the mapping- mulExpNegMulSq εis Lipschitz with constant- 1;
- abs_mulExpNegMulSq_comp_le_norm: For a fixed bounded continuous function- g, the mapping- mulExpNegMulSq ε ∘ gis bounded by- norm g, uniformly in- ε ≥ 0;
theorem
Continuous.mulExpNegMulSq
{ε : ℝ}
{α : Type u_1}
[TopologicalSpace α]
{f : α → ℝ}
(hf : Continuous f)
 :
Continuous fun (x : α) => ε.mulExpNegMulSq (f x)
For fixed ε > 0, the mapping mulExpNegMulSq ε is Lipschitz with constant 1
For fixed ε > 0, the mapping x ↦ mulExpNegMulSq ε x is bounded by `(√ε)⁻¹
theorem
Real.tendsto_mulExpNegMulSq
{x : ℝ}
 :
Filter.Tendsto (fun (ε : ℝ) => ε.mulExpNegMulSq x) (nhds 0) (nhds x)
For fixed x : ℝ, the mapping mulExpNegMulSq ε x converges pointwise to x as ε → 0
theorem
Real.abs_mulExpNegMulSq_comp_le_norm
{ε : ℝ}
{E : Type u_1}
[TopologicalSpace E]
{x : E}
(g : BoundedContinuousFunction E ℝ)
(hε : 0 ≤ ε)
 :
For a fixed bounded function g, mulExpNegMulSq ε ∘ g is bounded by norm g,
uniformly in ε ≥ 0.