Gram Matrices #
This file defines Gram matrices and proves their positive semidefiniteness.
Results require RCLike ๐.
Main definition #
- Matrix.gram: the- Matrix n n ๐with- โชv i, v jโซat- i j : n, where- v : n โ Efor an- Inner ๐ E.
Main results #
- Matrix.posSemidef_gram: Gram matrices are positive semidefinite.
- Matrix.posDef_gram_iff_linearIndependent: Linear independence of- vis equivalent to positive definiteness of- gram ๐ v.
@[simp]
theorem
Matrix.gram_zero
{E : Type u_1}
{n : Type u_2}
{๐ : Type u_4}
[RCLike ๐]
[SeminormedAddCommGroup E]
[InnerProductSpace ๐ E]
 :
@[simp]
theorem
Matrix.gram_single
{E : Type u_1}
{n : Type u_2}
{๐ : Type u_4}
[RCLike ๐]
[SeminormedAddCommGroup E]
[InnerProductSpace ๐ E]
[DecidableEq n]
(i : n)
(x : E)
 :
theorem
Matrix.submatrix_gram
{E : Type u_1}
{n : Type u_2}
{๐ : Type u_4}
[RCLike ๐]
[SeminormedAddCommGroup E]
[InnerProductSpace ๐ E]
(v : n โ E)
{m : Set n}
(f : โm โ n)
 :
theorem
Matrix.isHermitian_gram
{E : Type u_1}
{n : Type u_2}
(๐ : Type u_4)
[RCLike ๐]
[SeminormedAddCommGroup E]
[InnerProductSpace ๐ E]
(v : n โ E)
 :
(gram ๐ v).IsHermitian
A Gram matrix is Hermitian.
theorem
Matrix.star_dotProduct_gram_mulVec
{E : Type u_1}
{n : Type u_2}
{๐ : Type u_4}
[RCLike ๐]
[SeminormedAddCommGroup E]
[InnerProductSpace ๐ E]
[Fintype n]
(v : n โ E)
(x y : n โ ๐)
 :
theorem
Matrix.posSemidef_gram
{E : Type u_1}
{n : Type u_2}
(๐ : Type u_4)
[RCLike ๐]
[SeminormedAddCommGroup E]
[InnerProductSpace ๐ E]
[Fintype n]
(v : n โ E)
 :
(gram ๐ v).PosSemidef
A Gram matrix is positive semidefinite.
theorem
Matrix.linearIndependent_of_posDef_gram
{E : Type u_1}
{n : Type u_2}
{๐ : Type u_4}
[RCLike ๐]
[SeminormedAddCommGroup E]
[InnerProductSpace ๐ E]
[Fintype n]
{v : n โ E}
(h_gram : (gram ๐ v).PosDef)
 :
LinearIndependent ๐ v
In a normed space, positive definiteness of gram ๐ v implies linear independence of v.
theorem
Matrix.posDef_gram_of_linearIndependent
{E : Type u_1}
{n : Type u_2}
{๐ : Type u_4}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
[Fintype n]
{v : n โ E}
(h_li : LinearIndependent ๐ v)
 :
In a normed space, linear independence of v implies positive definiteness of gram ๐ v.
theorem
Matrix.posDef_gram_iff_linearIndependent
{E : Type u_1}
{n : Type u_2}
{๐ : Type u_4}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
[Fintype n]
{v : n โ E}
 :
In a normed space, linear independence of v is equivalent to positive definiteness of
gram ๐ v.