Documentation

Mathlib.Analysis.Complex.Norm

Norm on the complex numbers #

Equations
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Complex.norm_mul (z w : ) :
@[simp]
theorem Complex.norm_div (z w : ) :
theorem Complex.norm_pow (z : ) (n : ) :
z ^ n = z ^ n
theorem Complex.norm_zpow (z : ) (n : ) :
z ^ n = z ^ n
theorem Complex.norm_prod {ι : Type u_1} (s : Finset ι) (f : ι) :
s.prod f = is, f i
@[simp]
@[simp]
theorem Complex.norm_real (r : ) :
theorem Complex.norm_of_nonneg {r : } (h : 0 r) :
r = r
@[simp]
@[simp]
theorem Complex.norm_natCast (n : ) :
n = n
@[simp]
theorem Complex.nnnorm_natCast (n : ) :
n‖₊ = n
@[simp]
theorem Complex.norm_intCast (n : ) :
n = |n|
theorem Complex.norm_int_of_nonneg {n : } (hn : 0 n) :
n = n
@[simp]
theorem Complex.norm_ratCast (q : ) :
q = |q|
@[simp]
theorem Complex.norm_nnratCast (q : ℚ≥0) :
q = q
@[simp]
@[simp]
@[simp]
theorem Complex.sq_norm_sub_sq_re (z : ) :
z ^ 2 - z.re ^ 2 = z.im ^ 2
@[simp]
theorem Complex.sq_norm_sub_sq_im (z : ) :
z ^ 2 - z.im ^ 2 = z.re ^ 2
theorem Complex.norm_add_mul_I (x y : ) :
x + y * I = (x ^ 2 + y ^ 2)
@[simp]
theorem Complex.range_norm :
(Set.range fun (x : ) => x) = Set.Ici 0
@[simp]
@[simp]
@[simp]
theorem Complex.abs_re_eq_norm {z : } :
|z.re| = z z.im = 0
@[simp]
theorem Complex.abs_im_eq_norm {z : } :
|z.im| = z z.re = 0
theorem Complex.dist_eq (z w : ) :
dist z w = z - w
theorem Complex.dist_eq_re_im (z w : ) :
dist z w = ((z.re - w.re) ^ 2 + (z.im - w.im) ^ 2)
@[simp]
theorem Complex.dist_mk (x₁ y₁ x₂ y₂ : ) :
dist { re := x₁, im := y₁ } { re := x₂, im := y₂ } = ((x₁ - x₂) ^ 2 + (y₁ - y₂) ^ 2)
theorem Complex.dist_of_re_eq {z w : } (h : z.re = w.re) :
dist z w = dist z.im w.im
theorem Complex.nndist_of_re_eq {z w : } (h : z.re = w.re) :
nndist z w = nndist z.im w.im
theorem Complex.edist_of_re_eq {z w : } (h : z.re = w.re) :
edist z w = edist z.im w.im
theorem Complex.dist_of_im_eq {z w : } (h : z.im = w.im) :
dist z w = dist z.re w.re
theorem Complex.nndist_of_im_eq {z w : } (h : z.im = w.im) :
nndist z w = nndist z.re w.re
theorem Complex.edist_of_im_eq {z w : } (h : z.im = w.im) :
edist z w = edist z.re w.re

Cauchy sequences #

theorem Complex.isCauSeq_re (f : CauSeq fun (x : ) => x) :
IsCauSeq abs fun (n : ) => (f n).re
theorem Complex.isCauSeq_im (f : CauSeq fun (x : ) => x) :
IsCauSeq abs fun (n : ) => (f n).im
noncomputable def Complex.cauSeqRe (f : CauSeq fun (x : ) => x) :

The real part of a complex Cauchy sequence, as a real Cauchy sequence.

Equations
Instances For
    noncomputable def Complex.cauSeqIm (f : CauSeq fun (x : ) => x) :

    The imaginary part of a complex Cauchy sequence, as a real Cauchy sequence.

    Equations
    Instances For
      theorem Complex.isCauSeq_norm {f : } (hf : IsCauSeq (fun (x : ) => x) f) :
      IsCauSeq abs ((fun (x : ) => x) f)
      noncomputable def Complex.limAux (f : CauSeq fun (x : ) => x) :

      The limit of a Cauchy sequence of complex numbers.

      Equations
      Instances For
        theorem Complex.equiv_limAux (f : CauSeq fun (x : ) => x) :
        f CauSeq.const (fun (x : ) => x) (limAux f)
        theorem Complex.lim_eq_lim_im_add_lim_re (f : CauSeq fun (x : ) => x) :
        f.lim = (cauSeqRe f).lim + (cauSeqIm f).lim * I
        theorem Complex.lim_re (f : CauSeq fun (x : ) => x) :
        theorem Complex.lim_im (f : CauSeq fun (x : ) => x) :
        theorem Complex.isCauSeq_conj (f : CauSeq fun (x : ) => x) :
        IsCauSeq (fun (x : ) => x) fun (n : ) => (starRingEnd ) (f n)
        noncomputable def Complex.cauSeqConj (f : CauSeq fun (x : ) => x) :
        CauSeq fun (x : ) => x

        The complex conjugate of a complex Cauchy sequence, as a complex Cauchy sequence.

        Equations
        Instances For
          noncomputable def Complex.cauSeqNorm (f : CauSeq fun (x : ) => x) :

          The norm of a complex Cauchy sequence, as a real Cauchy sequence.

          Equations
          Instances For
            theorem Complex.lim_norm (f : CauSeq fun (x : ) => x) :
            theorem Complex.ne_zero_of_re_pos {s : } (hs : 0 < s.re) :
            s 0
            theorem Complex.ne_zero_of_one_lt_re {s : } (hs : 1 < s.re) :
            s 0
            theorem Complex.re_neg_ne_zero_of_re_pos {s : } (hs : 0 < s.re) :
            (-s).re 0
            theorem Complex.re_neg_ne_zero_of_one_lt_re {s : } (hs : 1 < s.re) :
            (-s).re 0