Documentation

Mathlib.Analysis.Calculus.Deriv.Star

Star operations on derivatives #

This file contains the usual formulas (and existence assertions) for the derivative of the star operation.

Most of the results in this file only apply when the field that the derivative is respect to has a trivial star operation; which as should be expected rules out 𝕜 = ℂ. The exceptions are HasDerivAt.conj_conj and DifferentiableAt.conj_conj, showing that conj ∘ f ∘ conj is differentiable when f is (and giving a formula for its derivative).

Derivative of x ↦ star x #

theorem HasDerivAtFilter.star {𝕜 : Type u} [NontriviallyNormedField 𝕜] [StarRing 𝕜] {F : Type v} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [StarAddMonoid F] [StarModule 𝕜 F] [ContinuousStar F] {f : 𝕜F} {f' : F} {x : 𝕜} [TrivialStar 𝕜] {L : Filter 𝕜} (h : HasDerivAtFilter f f' x L) :
HasDerivAtFilter (fun (x : 𝕜) => star (f x)) (star f') x L
theorem HasDerivWithinAt.star {𝕜 : Type u} [NontriviallyNormedField 𝕜] [StarRing 𝕜] {F : Type v} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [StarAddMonoid F] [StarModule 𝕜 F] [ContinuousStar F] {f : 𝕜F} {f' : F} {x : 𝕜} [TrivialStar 𝕜] {s : Set 𝕜} (h : HasDerivWithinAt f f' s x) :
HasDerivWithinAt (fun (x : 𝕜) => star (f x)) (star f') s x
theorem HasDerivAt.star {𝕜 : Type u} [NontriviallyNormedField 𝕜] [StarRing 𝕜] {F : Type v} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [StarAddMonoid F] [StarModule 𝕜 F] [ContinuousStar F] {f : 𝕜F} {f' : F} {x : 𝕜} [TrivialStar 𝕜] (h : HasDerivAt f f' x) :
HasDerivAt (fun (x : 𝕜) => star (f x)) (star f') x
theorem HasStrictDerivAt.star {𝕜 : Type u} [NontriviallyNormedField 𝕜] [StarRing 𝕜] {F : Type v} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [StarAddMonoid F] [StarModule 𝕜 F] [ContinuousStar F] {f : 𝕜F} {f' : F} {x : 𝕜} [TrivialStar 𝕜] (h : HasStrictDerivAt f f' x) :
HasStrictDerivAt (fun (x : 𝕜) => star (f x)) (star f') x
theorem derivWithin.star {𝕜 : Type u} [NontriviallyNormedField 𝕜] [StarRing 𝕜] {F : Type v} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [StarAddMonoid F] [StarModule 𝕜 F] [ContinuousStar F] {f : 𝕜F} {x : 𝕜} [TrivialStar 𝕜] {s : Set 𝕜} :
derivWithin (fun (y : 𝕜) => star (f y)) s x = star (derivWithin f s x)
theorem deriv.star {𝕜 : Type u} [NontriviallyNormedField 𝕜] [StarRing 𝕜] {F : Type v} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [StarAddMonoid F] [StarModule 𝕜 F] [ContinuousStar F] {f : 𝕜F} {x : 𝕜} [TrivialStar 𝕜] :
deriv (fun (y : 𝕜) => star (f y)) x = star (deriv f x)
@[simp]
theorem deriv.star' {𝕜 : Type u} [NontriviallyNormedField 𝕜] [StarRing 𝕜] {F : Type v} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [StarAddMonoid F] [StarModule 𝕜 F] [ContinuousStar F] {f : 𝕜F} [TrivialStar 𝕜] :
(deriv fun (y : 𝕜) => star (f y)) = fun (x : 𝕜) => star (deriv f x)
theorem HasDerivAt.star_conj {𝕜 : Type u} [NontriviallyNormedField 𝕜] [StarRing 𝕜] {F : Type v} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [StarAddMonoid F] [StarModule 𝕜 F] [ContinuousStar F] {x : 𝕜} [NormedStarGroup 𝕜] {f : 𝕜F} {f' : F} (hf : HasDerivAt f f' x) :
HasDerivAt (star f (starRingEnd 𝕜)) (star f') ((starRingEnd 𝕜) x)

If f has derivative f' at z, then star ∘ f ∘ conj has derivative conj f' at conj z.

theorem HasDerivAt.conj_conj {𝕜 : Type u} [NontriviallyNormedField 𝕜] [StarRing 𝕜] {x : 𝕜} [NormedStarGroup 𝕜] {f : 𝕜𝕜} {f' : 𝕜} (hf : HasDerivAt f f' x) :
HasDerivAt ((starRingEnd 𝕜) f (starRingEnd 𝕜)) ((starRingEnd 𝕜) f') ((starRingEnd 𝕜) x)

If f has derivative f' at z, then conj ∘ f ∘ conj has derivative conj f' at conj z.

theorem DifferentiableAt.conj_conj {𝕜 : Type u} [NontriviallyNormedField 𝕜] [StarRing 𝕜] {x : 𝕜} [NormedStarGroup 𝕜] {f : 𝕜𝕜} (hf : DifferentiableAt 𝕜 f x) :
DifferentiableAt 𝕜 ((starRingEnd 𝕜) f (starRingEnd 𝕜)) ((starRingEnd 𝕜) x)

If f is differentiable at conj z, then conj ∘ f ∘ conj is differentiable at z.