theorem
contDiffWithinAt_piLp
{𝕜 : Type u_1}
{ι : Type u_2}
{E : ι → Type u_3}
{H : Type u_4}
[NontriviallyNormedField 𝕜]
[NormedAddCommGroup H]
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
[NormedSpace 𝕜 H]
[Fintype ι]
(p : ENNReal)
[Fact (1 ≤ p)]
{n : WithTop ℕ∞}
{f : H → PiLp p E}
{t : Set H}
{y : H}
:
theorem
contDiffWithinAt_piLp'
{𝕜 : Type u_1}
{ι : Type u_2}
{E : ι → Type u_3}
{H : Type u_4}
[NontriviallyNormedField 𝕜]
[NormedAddCommGroup H]
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
[NormedSpace 𝕜 H]
[Fintype ι]
(p : ENNReal)
[Fact (1 ≤ p)]
{n : WithTop ℕ∞}
{f : H → PiLp p E}
{t : Set H}
{y : H}
(hf : ∀ (i : ι), ContDiffWithinAt 𝕜 n (fun (x : H) => f x i) t y)
:
ContDiffWithinAt 𝕜 n f t y
theorem
contDiffWithinAt_piLp_apply
{𝕜 : Type u_1}
{ι : Type u_2}
{E : ι → Type u_3}
[NontriviallyNormedField 𝕜]
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
[Fintype ι]
(p : ENNReal)
[Fact (1 ≤ p)]
{n : WithTop ℕ∞}
{i : ι}
{t : Set (PiLp p E)}
{y : PiLp p E}
:
ContDiffWithinAt 𝕜 n (fun (f : PiLp p E) => f i) t y
theorem
contDiffAt_piLp
{𝕜 : Type u_1}
{ι : Type u_2}
{E : ι → Type u_3}
{H : Type u_4}
[NontriviallyNormedField 𝕜]
[NormedAddCommGroup H]
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
[NormedSpace 𝕜 H]
[Fintype ι]
(p : ENNReal)
[Fact (1 ≤ p)]
{n : WithTop ℕ∞}
{f : H → PiLp p E}
{y : H}
:
theorem
contDiffAt_piLp'
{𝕜 : Type u_1}
{ι : Type u_2}
{E : ι → Type u_3}
{H : Type u_4}
[NontriviallyNormedField 𝕜]
[NormedAddCommGroup H]
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
[NormedSpace 𝕜 H]
[Fintype ι]
(p : ENNReal)
[Fact (1 ≤ p)]
{n : WithTop ℕ∞}
{f : H → PiLp p E}
{y : H}
(hf : ∀ (i : ι), ContDiffAt 𝕜 n (fun (x : H) => f x i) y)
:
ContDiffAt 𝕜 n f y
theorem
contDiffAt_piLp_apply
{𝕜 : Type u_1}
{ι : Type u_2}
{E : ι → Type u_3}
[NontriviallyNormedField 𝕜]
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
[Fintype ι]
(p : ENNReal)
[Fact (1 ≤ p)]
{n : WithTop ℕ∞}
{i : ι}
{y : PiLp p E}
:
ContDiffAt 𝕜 n (fun (f : PiLp p E) => f i) y
theorem
contDiffOn_piLp
{𝕜 : Type u_1}
{ι : Type u_2}
{E : ι → Type u_3}
{H : Type u_4}
[NontriviallyNormedField 𝕜]
[NormedAddCommGroup H]
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
[NormedSpace 𝕜 H]
[Fintype ι]
(p : ENNReal)
[Fact (1 ≤ p)]
{n : WithTop ℕ∞}
{f : H → PiLp p E}
{t : Set H}
:
theorem
contDiffOn_piLp'
{𝕜 : Type u_1}
{ι : Type u_2}
{E : ι → Type u_3}
{H : Type u_4}
[NontriviallyNormedField 𝕜]
[NormedAddCommGroup H]
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
[NormedSpace 𝕜 H]
[Fintype ι]
(p : ENNReal)
[Fact (1 ≤ p)]
{n : WithTop ℕ∞}
{f : H → PiLp p E}
{t : Set H}
(hf : ∀ (i : ι), ContDiffOn 𝕜 n (fun (x : H) => f x i) t)
:
ContDiffOn 𝕜 n f t
theorem
contDiffOn_piLp_apply
{𝕜 : Type u_1}
{ι : Type u_2}
{E : ι → Type u_3}
[NontriviallyNormedField 𝕜]
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
[Fintype ι]
(p : ENNReal)
[Fact (1 ≤ p)]
{n : WithTop ℕ∞}
{i : ι}
{t : Set (PiLp p E)}
:
ContDiffOn 𝕜 n (fun (f : PiLp p E) => f i) t
theorem
contDiff_piLp
{𝕜 : Type u_1}
{ι : Type u_2}
{E : ι → Type u_3}
{H : Type u_4}
[NontriviallyNormedField 𝕜]
[NormedAddCommGroup H]
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
[NormedSpace 𝕜 H]
[Fintype ι]
(p : ENNReal)
[Fact (1 ≤ p)]
{n : WithTop ℕ∞}
{f : H → PiLp p E}
:
theorem
contDiff_piLp'
{𝕜 : Type u_1}
{ι : Type u_2}
{E : ι → Type u_3}
{H : Type u_4}
[NontriviallyNormedField 𝕜]
[NormedAddCommGroup H]
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
[NormedSpace 𝕜 H]
[Fintype ι]
(p : ENNReal)
[Fact (1 ≤ p)]
{n : WithTop ℕ∞}
{f : H → PiLp p E}
(hf : ∀ (i : ι), ContDiff 𝕜 n fun (x : H) => f x i)
:
ContDiff 𝕜 n f
theorem
contDiff_piLp_apply
{𝕜 : Type u_1}
{ι : Type u_2}
{E : ι → Type u_3}
[NontriviallyNormedField 𝕜]
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
[Fintype ι]
(p : ENNReal)
[Fact (1 ≤ p)]
{n : WithTop ℕ∞}
{i : ι}
: