Documentation

Mathlib.Analysis.Analytic.Order

Vanishing Order of Analytic Functions #

This file defines the order of vanishing of an analytic function f at a point zβ‚€, as an element of β„•βˆž.

TODO #

Uniformize API between analytic and meromorphic functions

Vanishing Order at a Point: Definition and Characterization #

noncomputable def analyticOrderAt {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] (f : π•œ β†’ E) (zβ‚€ : π•œ) :

The order of vanishing of f at zβ‚€, as an element of β„•βˆž.

The order is defined to be ∞ if f is identically 0 on a neighbourhood of zβ‚€, and otherwise the unique n such that f can locally be written as f z = (z - zβ‚€) ^ n β€’ g z, where g is analytic and does not vanish at zβ‚€. See AnalyticAt.analyticOrderAt_eq_top and AnalyticAt.analyticOrderAt_eq_natCast for these equivalences.

If f isn't analytic at zβ‚€, then analyticOrderAt f zβ‚€ returns a junk value of 0.

Equations
Instances For
    @[deprecated analyticOrderAt (since := "2025-05-02")]
    def AnalyticAt.order {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] (f : π•œ β†’ E) (zβ‚€ : π•œ) :

    Alias of analyticOrderAt.


    The order of vanishing of f at zβ‚€, as an element of β„•βˆž.

    The order is defined to be ∞ if f is identically 0 on a neighbourhood of zβ‚€, and otherwise the unique n such that f can locally be written as f z = (z - zβ‚€) ^ n β€’ g z, where g is analytic and does not vanish at zβ‚€. See AnalyticAt.analyticOrderAt_eq_top and AnalyticAt.analyticOrderAt_eq_natCast for these equivalences.

    If f isn't analytic at zβ‚€, then analyticOrderAt f zβ‚€ returns a junk value of 0.

    Equations
    Instances For
      noncomputable def analyticOrderNatAt {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] (f : π•œ β†’ E) (zβ‚€ : π•œ) :

      The order of vanishing of f at zβ‚€, as an element of β„•.

      The order is defined to be 0 if f is identically zero on a neighbourhood of zβ‚€, and is otherwise the unique n such that f can locally be written as f z = (z - zβ‚€) ^ n β€’ g z, where g is analyticand does not vanish at zβ‚€. See AnalyticAt.analyticOrderAt_eq_top and AnalyticAt.analyticOrderAt_eq_natCast for these equivalences.

      If f isn't analytic at zβ‚€, then analyticOrderNatAt f zβ‚€ returns a junk value of 0.

      Equations
      Instances For
        @[simp]
        theorem analyticOrderAt_of_not_analyticAt {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} (hf : Β¬AnalyticAt π•œ f zβ‚€) :
        analyticOrderAt f zβ‚€ = 0
        @[simp]
        theorem analyticOrderNatAt_of_not_analyticAt {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} (hf : Β¬AnalyticAt π•œ f zβ‚€) :
        analyticOrderNatAt f zβ‚€ = 0
        @[simp]
        theorem Nat.cast_analyticOrderNatAt {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} (hf : analyticOrderAt f zβ‚€ β‰  ⊀) :
        ↑(analyticOrderNatAt f zβ‚€) = analyticOrderAt f zβ‚€
        theorem analyticOrderAt_eq_top {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} :
        analyticOrderAt f zβ‚€ = ⊀ ↔ βˆ€αΆ  (z : π•œ) in nhds zβ‚€, f z = 0

        The order of a function f at a zβ‚€ is infinity iff f vanishes locally around zβ‚€.

        @[deprecated analyticOrderAt_eq_top (since := "2025-05-03")]
        theorem AnalyticAt.order_eq_top_iff {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} :
        analyticOrderAt f zβ‚€ = ⊀ ↔ βˆ€αΆ  (z : π•œ) in nhds zβ‚€, f z = 0

        Alias of analyticOrderAt_eq_top.


        The order of a function f at a zβ‚€ is infinity iff f vanishes locally around zβ‚€.

        theorem AnalyticAt.analyticOrderAt_eq_natCast {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {n : β„•} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) :
        analyticOrderAt f zβ‚€ = ↑n ↔ βˆƒ (g : π•œ β†’ E), AnalyticAt π•œ g zβ‚€ ∧ g zβ‚€ β‰  0 ∧ βˆ€αΆ  (z : π•œ) in nhds zβ‚€, f z = (z - zβ‚€) ^ n β€’ g z

        The order of an analytic function f at zβ‚€ equals a natural number n iff f can locally be written as f z = (z - zβ‚€) ^ n β€’ g z, where g is analytic and does not vanish at zβ‚€.

        @[deprecated AnalyticAt.analyticOrderAt_eq_natCast (since := "2025-05-03")]
        theorem AnalyticAt.order_eq_nat_iff {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {n : β„•} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) :
        analyticOrderAt f zβ‚€ = ↑n ↔ βˆƒ (g : π•œ β†’ E), AnalyticAt π•œ g zβ‚€ ∧ g zβ‚€ β‰  0 ∧ βˆ€αΆ  (z : π•œ) in nhds zβ‚€, f z = (z - zβ‚€) ^ n β€’ g z

        Alias of AnalyticAt.analyticOrderAt_eq_natCast.


        The order of an analytic function f at zβ‚€ equals a natural number n iff f can locally be written as f z = (z - zβ‚€) ^ n β€’ g z, where g is analytic and does not vanish at zβ‚€.

        theorem AnalyticAt.analyticOrderNatAt_eq_iff {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) (hf' : analyticOrderAt f zβ‚€ β‰  ⊀) {n : β„•} :
        analyticOrderNatAt f zβ‚€ = n ↔ βˆƒ (g : π•œ β†’ E), AnalyticAt π•œ g zβ‚€ ∧ g zβ‚€ β‰  0 ∧ βˆ€αΆ  (z : π•œ) in nhds zβ‚€, f z = (z - zβ‚€) ^ n β€’ g z

        The order of an analytic function f at zβ‚€ equals a natural number n iff f can locally be written as f z = (z - zβ‚€) ^ n β€’ g z, where g is analytic and does not vanish at zβ‚€.

        theorem AnalyticAt.analyticOrderAt_ne_top {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) :
        analyticOrderAt f zβ‚€ β‰  ⊀ ↔ βˆƒ (g : π•œ β†’ E), AnalyticAt π•œ g zβ‚€ ∧ g zβ‚€ β‰  0 ∧ f =αΆ [nhds zβ‚€] fun (z : π•œ) => (z - zβ‚€) ^ analyticOrderNatAt f zβ‚€ β€’ g z

        The order of an analytic function f at zβ‚€ is finite iff f can locally be written as f z = (z - zβ‚€) ^ analyticOrderNatAt f zβ‚€ β€’ g z, where g is analytic and does not vanish at zβ‚€.

        See MeromorphicNFAt.order_eq_zero_iff for an analogous statement about meromorphic functions in normal form.

        @[deprecated AnalyticAt.analyticOrderAt_ne_top (since := "2025-05-03")]
        theorem AnalyticAt.order_ne_top_iff {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) :
        analyticOrderAt f zβ‚€ β‰  ⊀ ↔ βˆƒ (g : π•œ β†’ E), AnalyticAt π•œ g zβ‚€ ∧ g zβ‚€ β‰  0 ∧ f =αΆ [nhds zβ‚€] fun (z : π•œ) => (z - zβ‚€) ^ analyticOrderNatAt f zβ‚€ β€’ g z

        Alias of AnalyticAt.analyticOrderAt_ne_top.


        The order of an analytic function f at zβ‚€ is finite iff f can locally be written as f z = (z - zβ‚€) ^ analyticOrderNatAt f zβ‚€ β€’ g z, where g is analytic and does not vanish at zβ‚€.

        See MeromorphicNFAt.order_eq_zero_iff for an analogous statement about meromorphic functions in normal form.

        @[deprecated AnalyticAt.analyticOrderAt_ne_top (since := "2025-02-03")]
        theorem AnalyticAt.order_neq_top_iff {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) :
        analyticOrderAt f zβ‚€ β‰  ⊀ ↔ βˆƒ (g : π•œ β†’ E), AnalyticAt π•œ g zβ‚€ ∧ g zβ‚€ β‰  0 ∧ f =αΆ [nhds zβ‚€] fun (z : π•œ) => (z - zβ‚€) ^ analyticOrderNatAt f zβ‚€ β€’ g z

        Alias of AnalyticAt.analyticOrderAt_ne_top.


        The order of an analytic function f at zβ‚€ is finite iff f can locally be written as f z = (z - zβ‚€) ^ analyticOrderNatAt f zβ‚€ β€’ g z, where g is analytic and does not vanish at zβ‚€.

        See MeromorphicNFAt.order_eq_zero_iff for an analogous statement about meromorphic functions in normal form.

        theorem analyticOrderAt_eq_zero {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} :
        analyticOrderAt f zβ‚€ = 0 ↔ Β¬AnalyticAt π•œ f zβ‚€ ∨ f zβ‚€ β‰  0
        theorem analyticOrderAt_ne_zero {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} :
        analyticOrderAt f zβ‚€ β‰  0 ↔ AnalyticAt π•œ f zβ‚€ ∧ f zβ‚€ = 0
        theorem AnalyticAt.analyticOrderAt_eq_zero {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) :
        analyticOrderAt f zβ‚€ = 0 ↔ f zβ‚€ β‰  0

        The order of an analytic function f at zβ‚€ is zero iff f does not vanish at zβ‚€.

        @[deprecated AnalyticAt.analyticOrderAt_eq_zero (since := "2025-05-03")]
        theorem AnalyticAt.order_eq_zero_iff {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) :
        analyticOrderAt f zβ‚€ = 0 ↔ f zβ‚€ β‰  0

        Alias of AnalyticAt.analyticOrderAt_eq_zero.


        The order of an analytic function f at zβ‚€ is zero iff f does not vanish at zβ‚€.

        theorem AnalyticAt.analyticOrderAt_ne_zero {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) :
        analyticOrderAt f zβ‚€ β‰  0 ↔ f zβ‚€ = 0

        The order of an analytic function f at zβ‚€ is zero iff f does not vanish at zβ‚€.

        theorem apply_eq_zero_of_analyticOrderAt_ne_zero {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} (hf : analyticOrderAt f zβ‚€ β‰  0) :
        f zβ‚€ = 0

        A function vanishes at a point if its analytic order is nonzero in β„•βˆž.

        theorem apply_eq_zero_of_analyticOrderNatAt_ne_zero {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} (hf : analyticOrderNatAt f zβ‚€ β‰  0) :
        f zβ‚€ = 0

        A function vanishes at a point if its analytic order is nonzero when converted to β„•.

        @[deprecated apply_eq_zero_of_analyticOrderNatAt_ne_zero (since := "2025-05-03")]
        theorem AnalyticAt.apply_eq_zero_of_order_toNat_ne_zero {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} (hf : analyticOrderNatAt f zβ‚€ β‰  0) :
        f zβ‚€ = 0

        Alias of apply_eq_zero_of_analyticOrderNatAt_ne_zero.


        A function vanishes at a point if its analytic order is nonzero when converted to β„•.

        theorem natCast_le_analyticOrderAt {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) {n : β„•} :
        ↑n ≀ analyticOrderAt f zβ‚€ ↔ βˆƒ (g : π•œ β†’ E), AnalyticAt π•œ g zβ‚€ ∧ βˆ€αΆ  (z : π•œ) in nhds zβ‚€, f z = (z - zβ‚€) ^ n β€’ g z

        Characterization of which natural numbers are ≀ hf.order. Useful for avoiding case splits, since it applies whether or not the order is ∞.

        @[deprecated natCast_le_analyticOrderAt (since := "2025-05-03")]
        theorem natCast_le_order_iff {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) {n : β„•} :
        ↑n ≀ analyticOrderAt f zβ‚€ ↔ βˆƒ (g : π•œ β†’ E), AnalyticAt π•œ g zβ‚€ ∧ βˆ€αΆ  (z : π•œ) in nhds zβ‚€, f z = (z - zβ‚€) ^ n β€’ g z

        Alias of natCast_le_analyticOrderAt.


        Characterization of which natural numbers are ≀ hf.order. Useful for avoiding case splits, since it applies whether or not the order is ∞.

        theorem analyticOrderAt_congr {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f g : π•œ β†’ E} {zβ‚€ : π•œ} (hfg : f =αΆ [nhds zβ‚€] g) :
        analyticOrderAt f zβ‚€ = analyticOrderAt g zβ‚€

        If two functions agree in a neighborhood of zβ‚€, then their orders at zβ‚€ agree.

        @[deprecated analyticOrderAt_congr (since := "2025-05-03")]
        theorem AnalyticAt.order_congr {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f g : π•œ β†’ E} {zβ‚€ : π•œ} (hfg : f =αΆ [nhds zβ‚€] g) :
        analyticOrderAt f zβ‚€ = analyticOrderAt g zβ‚€

        Alias of analyticOrderAt_congr.


        If two functions agree in a neighborhood of zβ‚€, then their orders at zβ‚€ agree.

        @[simp]
        theorem analyticOrderAt_neg {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {zβ‚€ : π•œ} :
        analyticOrderAt (-f) zβ‚€ = analyticOrderAt f zβ‚€
        theorem le_analyticOrderAt_add {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f g : π•œ β†’ E} {zβ‚€ : π•œ} :
        min (analyticOrderAt f zβ‚€) (analyticOrderAt g zβ‚€) ≀ analyticOrderAt (f + g) zβ‚€

        The order of a sum is at least the minimum of the orders of the summands.

        @[deprecated le_analyticOrderAt_add (since := "2025-05-03")]
        theorem AnalyticAt.order_add {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f g : π•œ β†’ E} {zβ‚€ : π•œ} :
        min (analyticOrderAt f zβ‚€) (analyticOrderAt g zβ‚€) ≀ analyticOrderAt (f + g) zβ‚€

        Alias of le_analyticOrderAt_add.


        The order of a sum is at least the minimum of the orders of the summands.

        theorem le_analyticOrderAt_sub {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f g : π•œ β†’ E} {zβ‚€ : π•œ} :
        min (analyticOrderAt f zβ‚€) (analyticOrderAt g zβ‚€) ≀ analyticOrderAt (f - g) zβ‚€
        theorem analyticOrderAt_add_eq_left_of_lt {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f g : π•œ β†’ E} {zβ‚€ : π•œ} (hfg : analyticOrderAt f zβ‚€ < analyticOrderAt g zβ‚€) :
        analyticOrderAt (f + g) zβ‚€ = analyticOrderAt f zβ‚€
        theorem analyticOrderAt_add_eq_right_of_lt {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f g : π•œ β†’ E} {zβ‚€ : π•œ} (hgf : analyticOrderAt g zβ‚€ < analyticOrderAt f zβ‚€) :
        analyticOrderAt (f + g) zβ‚€ = analyticOrderAt g zβ‚€
        @[deprecated le_analyticOrderAt_add (since := "2025-05-03")]
        theorem order_add_of_order_lt_order {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f g : π•œ β†’ E} {zβ‚€ : π•œ} :
        min (analyticOrderAt f zβ‚€) (analyticOrderAt g zβ‚€) ≀ analyticOrderAt (f + g) zβ‚€

        Alias of le_analyticOrderAt_add.


        The order of a sum is at least the minimum of the orders of the summands.

        theorem analyticOrderAt_add_of_ne {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f g : π•œ β†’ E} {zβ‚€ : π•œ} (hfg : analyticOrderAt f zβ‚€ β‰  analyticOrderAt g zβ‚€) :
        analyticOrderAt (f + g) zβ‚€ = min (analyticOrderAt f zβ‚€) (analyticOrderAt g zβ‚€)

        If two functions have unequal orders, then the order of their sum is exactly the minimum of the orders of the summands.

        @[deprecated analyticOrderAt_add_of_ne (since := "2025-05-03")]
        theorem AnalyticAt.order_add_of_order_ne_order {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {f g : π•œ β†’ E} {zβ‚€ : π•œ} (hfg : analyticOrderAt f zβ‚€ β‰  analyticOrderAt g zβ‚€) :
        analyticOrderAt (f + g) zβ‚€ = min (analyticOrderAt f zβ‚€) (analyticOrderAt g zβ‚€)

        Alias of analyticOrderAt_add_of_ne.


        If two functions have unequal orders, then the order of their sum is exactly the minimum of the orders of the summands.

        theorem analyticOrderAt_smul_eq_top_of_left {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {g : π•œ β†’ E} {zβ‚€ : π•œ} {f : π•œ β†’ π•œ} (hf : analyticOrderAt f zβ‚€ = ⊀) :
        theorem analyticOrderAt_smul_eq_top_of_right {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {g : π•œ β†’ E} {zβ‚€ : π•œ} {f : π•œ β†’ π•œ} (hg : analyticOrderAt g zβ‚€ = ⊀) :
        theorem analyticOrderAt_smul {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {g : π•œ β†’ E} {zβ‚€ : π•œ} {f : π•œ β†’ π•œ} (hf : AnalyticAt π•œ f zβ‚€) (hg : AnalyticAt π•œ g zβ‚€) :
        analyticOrderAt (f β€’ g) zβ‚€ = analyticOrderAt f zβ‚€ + analyticOrderAt g zβ‚€

        The order is additive when scalar multiplying analytic functions.

        Vanishing Order at a Point: Elementary Computations #

        @[simp]
        theorem analyticOrderAt_centeredMonomial {π•œ : Type u_1} [NontriviallyNormedField π•œ] {zβ‚€ : π•œ} {n : β„•} :
        analyticOrderAt ((fun (x : π•œ) => x - zβ‚€) ^ n) zβ‚€ = ↑n

        Simplifier lemma for the order of a centered monomial

        @[deprecated analyticOrderAt_centeredMonomial (since := "2025-05-03")]
        theorem analyticAt_order_centeredMonomial {π•œ : Type u_1} [NontriviallyNormedField π•œ] {zβ‚€ : π•œ} {n : β„•} :
        analyticOrderAt ((fun (x : π•œ) => x - zβ‚€) ^ n) zβ‚€ = ↑n

        Alias of analyticOrderAt_centeredMonomial.


        Simplifier lemma for the order of a centered monomial

        theorem analyticOrderAt_mul_eq_top_of_left {π•œ : Type u_1} [NontriviallyNormedField π•œ] {f g : π•œ β†’ π•œ} {zβ‚€ : π•œ} (hf : analyticOrderAt f zβ‚€ = ⊀) :
        analyticOrderAt (f * g) zβ‚€ = ⊀
        @[deprecated analyticOrderAt_mul_eq_top_of_left (since := "2025-05-03")]
        theorem AnalyticAt.order_mul_of_order_eq_top {π•œ : Type u_1} [NontriviallyNormedField π•œ] {f g : π•œ β†’ π•œ} {zβ‚€ : π•œ} (hf : analyticOrderAt f zβ‚€ = ⊀) :
        analyticOrderAt (f * g) zβ‚€ = ⊀

        Alias of analyticOrderAt_mul_eq_top_of_left.

        theorem analyticOrderAt_mul_eq_top_of_right {π•œ : Type u_1} [NontriviallyNormedField π•œ] {f g : π•œ β†’ π•œ} {zβ‚€ : π•œ} (hg : analyticOrderAt g zβ‚€ = ⊀) :
        analyticOrderAt (f * g) zβ‚€ = ⊀
        theorem analyticOrderAt_mul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {f g : π•œ β†’ π•œ} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) (hg : AnalyticAt π•œ g zβ‚€) :
        analyticOrderAt (f * g) zβ‚€ = analyticOrderAt f zβ‚€ + analyticOrderAt g zβ‚€

        The order is additive when multiplying analytic functions.

        @[deprecated analyticOrderAt_mul (since := "2025-05-03")]
        theorem AnalyticAt.order_mul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {f g : π•œ β†’ π•œ} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) (hg : AnalyticAt π•œ g zβ‚€) :
        analyticOrderAt (f * g) zβ‚€ = analyticOrderAt f zβ‚€ + analyticOrderAt g zβ‚€

        Alias of analyticOrderAt_mul.


        The order is additive when multiplying analytic functions.

        theorem analyticOrderNatAt_mul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {f g : π•œ β†’ π•œ} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) (hg : AnalyticAt π•œ g zβ‚€) (hf' : analyticOrderAt f zβ‚€ β‰  ⊀) (hg' : analyticOrderAt g zβ‚€ β‰  ⊀) :
        analyticOrderNatAt (f * g) zβ‚€ = analyticOrderNatAt f zβ‚€ + analyticOrderNatAt g zβ‚€

        The order is additive when multiplying analytic functions.

        theorem analyticOrderAt_pow {π•œ : Type u_1} [NontriviallyNormedField π•œ] {f : π•œ β†’ π•œ} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) (n : β„•) :
        analyticOrderAt (f ^ n) zβ‚€ = n β€’ analyticOrderAt f zβ‚€

        The order multiplies by n when taking an analytic function to its nth power.

        @[deprecated analyticOrderAt_pow (since := "2025-05-03")]
        theorem AnalyticAt.order_pow {π•œ : Type u_1} [NontriviallyNormedField π•œ] {f : π•œ β†’ π•œ} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) (n : β„•) :
        analyticOrderAt (f ^ n) zβ‚€ = n β€’ analyticOrderAt f zβ‚€

        Alias of analyticOrderAt_pow.


        The order multiplies by n when taking an analytic function to its nth power.

        theorem analyticOrderNatAt_pow {π•œ : Type u_1} [NontriviallyNormedField π•œ] {f : π•œ β†’ π•œ} {zβ‚€ : π•œ} (hf : AnalyticAt π•œ f zβ‚€) (n : β„•) :
        analyticOrderNatAt (f ^ n) zβ‚€ = n β€’ analyticOrderNatAt f zβ‚€

        The order multiplies by n when taking an analytic function to its nth power.

        Level Sets of the Order Function #

        theorem AnalyticOnNhd.isClopen_setOf_analyticOrderAt_eq_top {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {U : Set π•œ} {f : π•œ β†’ E} (hf : AnalyticOnNhd π•œ f U) :
        IsClopen {u : ↑U | analyticOrderAt f ↑u = ⊀}

        The set where an analytic function has infinite order is clopen in its domain of analyticity.

        theorem AnalyticOnNhd.exists_analyticOrderAt_ne_top_iff_forall {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {U : Set π•œ} {f : π•œ β†’ E} (hf : AnalyticOnNhd π•œ f U) (hU : IsConnected U) :
        (βˆƒ (u : ↑U), analyticOrderAt f ↑u β‰  ⊀) ↔ βˆ€ (u : ↑U), analyticOrderAt f ↑u β‰  ⊀

        On a connected set, there exists a point where a meromorphic function f has finite order iff f has finite order at every point.

        theorem AnalyticOnNhd.analyticOrderAt_ne_top_of_isPreconnected {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {U : Set π•œ} {f : π•œ β†’ E} (hf : AnalyticOnNhd π•œ f U) {x y : π•œ} (hU : IsPreconnected U) (h₁x : x ∈ U) (hy : y ∈ U) (hβ‚‚x : analyticOrderAt f x β‰  ⊀) :

        On a preconnected set, a meromorphic function has finite order at one point if it has finite order at another point.

        theorem AnalyticOnNhd.codiscrete_setOf_analyticOrderAt_eq_zero_or_top {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {U : Set π•œ} {f : π•œ β†’ E} (hf : AnalyticOnNhd π•œ f U) :
        {u : ↑U | analyticOrderAt f ↑u = 0 ∨ analyticOrderAt f ↑u = ⊀} ∈ Filter.codiscrete ↑U

        The set where an analytic function has zero or infinite order is discrete within its domain of analyticity.