The ⋆-algebra automorphism given by a unitary element #
This file defines the ⋆-algebra automorphism on R given by a unitary u,
which is Unitary.conjStarAlgAut S R u, defined to be x ↦ u * x * star u.
def
Unitary.conjStarAlgAut
(S : Type u_1)
(R : Type u_2)
[Semiring R]
[StarMul R]
[SMul S R]
[IsScalarTower S R R]
[SMulCommClass S R R]
:
Each unitary element u defines a ⋆-algebra automorphism such that
x ↦ u * x * star u.
This is the ⋆-algebra automorphism version of a specialized version of
MulSemiringAction.toAlgAut.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Unitary.conjStarAlgAut_apply
{S : Type u_1}
{R : Type u_2}
[Semiring R]
[StarMul R]
[SMul S R]
[IsScalarTower S R R]
[SMulCommClass S R R]
(u : ↥(unitary R))
(x : R)
:
theorem
Unitary.conjStarAlgAut_symm_apply
{S : Type u_1}
{R : Type u_2}
[Semiring R]
[StarMul R]
[SMul S R]
[IsScalarTower S R R]
[SMulCommClass S R R]
(u : ↥(unitary R))
(x : R)
:
theorem
Unitary.conjStarAlgAut_star_apply
{S : Type u_1}
{R : Type u_2}
[Semiring R]
[StarMul R]
[SMul S R]
[IsScalarTower S R R]
[SMulCommClass S R R]
(u : ↥(unitary R))
(x : R)
:
@[simp]
theorem
Unitary.conjStarAlgAut_symm
{S : Type u_1}
{R : Type u_2}
[Semiring R]
[StarMul R]
[SMul S R]
[IsScalarTower S R R]
[SMulCommClass S R R]
(u : ↥(unitary R))
:
theorem
Unitary.conjStarAlgAut_trans_conjStarAlgAut
{S : Type u_1}
{R : Type u_2}
[Semiring R]
[StarMul R]
[SMul S R]
[IsScalarTower S R R]
[SMulCommClass S R R]
(u₁ u₂ : ↥(unitary R))
:
theorem
Unitary.conjStarAlgAut_mul_apply
{S : Type u_1}
{R : Type u_2}
[Semiring R]
[StarMul R]
[SMul S R]
[IsScalarTower S R R]
[SMulCommClass S R R]
(u₁ u₂ : ↥(unitary R))
(x : R)
:
theorem
Unitary.toRingEquiv_conjStarAlgAut
{S : Type u_1}
{R : Type u_2}
[Semiring R]
[StarMul R]
[SMul S R]
[IsScalarTower S R R]
[SMulCommClass S R R]
(u : ↥(unitary R))
:
((conjStarAlgAut S R) u).toRingEquiv = MulSemiringAction.toRingEquiv (ConjAct Rˣ) R (ConjAct.toConjAct (toUnits u))
theorem
Unitary.toAlgEquiv_conjStarAlgAut
{R : Type u_2}
[Semiring R]
[StarMul R]
{S : Type u_3}
[CommSemiring S]
[Algebra S R]
(u : ↥(unitary R))
:
((conjStarAlgAut S R) u).toAlgEquiv = MulSemiringAction.toAlgEquiv S R (ConjAct.toConjAct (toUnits u))