Documentation

Mathlib.Algebra.Ring.TransferInstance

Transfer algebraic structures across Equivs #

This continues the pattern set in Mathlib/Algebra/Group/TransferInstance.lean.

def Equiv.ringEquiv {α : Type u_1} {β : Type u_2} (e : α β) [Add β] [Mul β] :
have add := e.add; have mul := e.mul; α ≃+* β

An equivalence e : α ≃ β gives a ring equivalence α ≃+* β where the ring structure on α is the one obtained by transporting a ring structure on β back along e.

Equations
  • e.ringEquiv = { toEquiv := e, map_mul' := , map_add' := }
Instances For
    @[simp]
    theorem Equiv.ringEquiv_apply {α : Type u_1} {β : Type u_2} (e : α β) [Add β] [Mul β] (a : α) :
    e.ringEquiv a = e a
    theorem Equiv.ringEquiv_symm_apply {α : Type u_1} {β : Type u_2} (e : α β) [Add β] [Mul β] (b : β) :
    @[reducible, inline]

    Transfer NonUnitalNonAssocSemiring across an Equiv

    Equations
    Instances For
      @[reducible, inline]
      abbrev Equiv.nonUnitalSemiring {α : Type u_1} {β : Type u_2} (e : α β) [NonUnitalSemiring β] :

      Transfer NonUnitalSemiring across an Equiv

      Equations
      Instances For
        @[reducible, inline]
        abbrev Equiv.addMonoidWithOne {α : Type u_1} {β : Type u_2} (e : α β) [AddMonoidWithOne β] :

        Transfer AddMonoidWithOne across an Equiv

        Equations
        Instances For
          @[reducible, inline]
          abbrev Equiv.addGroupWithOne {α : Type u_1} {β : Type u_2} (e : α β) [AddGroupWithOne β] :

          Transfer AddGroupWithOne across an Equiv

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[reducible, inline]
            abbrev Equiv.nonAssocSemiring {α : Type u_1} {β : Type u_2} (e : α β) [NonAssocSemiring β] :

            Transfer NonAssocSemiring across an Equiv

            Equations
            Instances For
              @[reducible, inline]
              abbrev Equiv.semiring {α : Type u_1} {β : Type u_2} (e : α β) [Semiring β] :

              Transfer Semiring across an Equiv

              Equations
              Instances For
                @[reducible, inline]
                abbrev Equiv.nonUnitalCommSemiring {α : Type u_1} {β : Type u_2} (e : α β) [NonUnitalCommSemiring β] :

                Transfer NonUnitalCommSemiring across an Equiv

                Equations
                Instances For
                  @[reducible, inline]
                  abbrev Equiv.commSemiring {α : Type u_1} {β : Type u_2} (e : α β) [CommSemiring β] :

                  Transfer CommSemiring across an Equiv

                  Equations
                  Instances For
                    @[reducible, inline]
                    abbrev Equiv.nonUnitalNonAssocRing {α : Type u_1} {β : Type u_2} (e : α β) [NonUnitalNonAssocRing β] :

                    Transfer NonUnitalNonAssocRing across an Equiv

                    Equations
                    Instances For
                      @[reducible, inline]
                      abbrev Equiv.nonUnitalRing {α : Type u_1} {β : Type u_2} (e : α β) [NonUnitalRing β] :

                      Transfer NonUnitalRing across an Equiv

                      Equations
                      Instances For
                        @[reducible, inline]
                        abbrev Equiv.nonAssocRing {α : Type u_1} {β : Type u_2} (e : α β) [NonAssocRing β] :

                        Transfer NonAssocRing across an Equiv

                        Equations
                        Instances For
                          @[reducible, inline]
                          abbrev Equiv.ring {α : Type u_1} {β : Type u_2} (e : α β) [Ring β] :
                          Ring α

                          Transfer Ring across an Equiv

                          Equations
                          Instances For
                            @[reducible, inline]
                            abbrev Equiv.nonUnitalCommRing {α : Type u_1} {β : Type u_2} (e : α β) [NonUnitalCommRing β] :

                            Transfer NonUnitalCommRing across an Equiv

                            Equations
                            Instances For
                              @[reducible, inline]
                              abbrev Equiv.commRing {α : Type u_1} {β : Type u_2} (e : α β) [CommRing β] :

                              Transfer CommRing across an Equiv

                              Equations
                              Instances For
                                theorem Equiv.isDomain {α : Type u_1} {β : Type u_2} [Semiring β] [IsDomain β] (e : α β) :

                                Transfer IsDomain across an Equiv