Isomorphisms of monoids with zero #
@[instance 100]
instance
MulEquivClass.toZeroHomClass
{F : Type u_1}
{α : Type u_2}
{β : Type u_3}
[EquivLike F α β]
[MulZeroClass α]
[MulZeroClass β]
[MulEquivClass F α β]
:
ZeroHomClass F α β
@[instance 100]
instance
MulEquivClass.toMonoidWithZeroHomClass
{F : Type u_1}
{α : Type u_2}
{β : Type u_3}
[EquivLike F α β]
[MulZeroOneClass α]
[MulZeroOneClass β]
[MulEquivClass F α β]
:
MonoidWithZeroHomClass F α β
def
MulEquiv.toMonoidWithZeroHom
{G : Type u_1}
{H : Type u_2}
[MulZeroOneClass G]
[MulZeroOneClass H]
(f : G ≃* H)
:
An isomorphism of monoids with zero can be treated as a homomorphism preserving zero.
This is a helper projection that utilizes the MonoidWithZeroHomClass
instance.
Equations
- f.toMonoidWithZeroHom = ↑f
Instances For
@[simp]
theorem
MulEquiv.toMonoidWithZeroHom_apply
{G : Type u_1}
{H : Type u_2}
[MulZeroOneClass G]
[MulZeroOneClass H]
(f : G ≃* H)
(x : G)
:
theorem
MulEquiv.toMonoidWithZeroHom_injective
{G : Type u_1}
{H : Type u_2}
[MulZeroOneClass G]
[MulZeroOneClass H]
(f : G ≃* H)
:
theorem
MulEquiv.toMonoidWithZeroHom_surjective
{G : Type u_1}
{H : Type u_2}
[MulZeroOneClass G]
[MulZeroOneClass H]
(f : G ≃* H)
:
theorem
MulEquiv.toMonoidWithZeroHom_bijective
{G : Type u_1}
{H : Type u_2}
[MulZeroOneClass G]
[MulZeroOneClass H]
(f : G ≃* H)
:
@[simp]
theorem
MulEquiv.toMonoidWithZeroHom_inj
{G : Type u_1}
{H : Type u_2}
[MulZeroOneClass G]
[MulZeroOneClass H]
{f g : G ≃* H}
: