Documentation

Mathlib.Algebra.GroupWithZero.Equiv

Isomorphisms of monoids with zero #

@[instance 100]
instance MulEquivClass.toZeroHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [EquivLike F α β] [MulZeroClass α] [MulZeroClass β] [MulEquivClass F α β] :
ZeroHomClass F α β
@[instance 100]
instance MulEquivClass.toMonoidWithZeroHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [EquivLike F α β] [MulZeroOneClass α] [MulZeroOneClass β] [MulEquivClass F α β] :
def MulEquiv.toMonoidWithZeroHom {G : Type u_1} {H : Type u_2} [MulZeroOneClass G] [MulZeroOneClass H] (f : G ≃* H) :

An isomorphism of monoids with zero can be treated as a homomorphism preserving zero. This is a helper projection that utilizes the MonoidWithZeroHomClass instance.

Equations
Instances For
    @[simp]
    theorem MulEquiv.toMonoidWithZeroHom_apply {G : Type u_1} {H : Type u_2} [MulZeroOneClass G] [MulZeroOneClass H] (f : G ≃* H) (x : G) :