Documentation

Mathlib.Algebra.Group.Finsupp

Additive monoid structure on ι →₀ M #

instance Finsupp.instAdd {ι : Type u_1} {M : Type u_3} [AddZeroClass M] :
Add (ι →₀ M)
Equations
@[simp]
theorem Finsupp.coe_add {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (f g : ι →₀ M) :
⇑(f + g) = f + g
theorem Finsupp.add_apply {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (g₁ g₂ : ι →₀ M) (a : ι) :
(g₁ + g₂) a = g₁ a + g₂ a
theorem Finsupp.support_add {ι : Type u_1} {M : Type u_3} [AddZeroClass M] {g₁ g₂ : ι →₀ M} [DecidableEq ι] :
(g₁ + g₂).support g₁.support g₂.support
theorem Finsupp.support_add_eq {ι : Type u_1} {M : Type u_3} [AddZeroClass M] {g₁ g₂ : ι →₀ M} [DecidableEq ι] (h : Disjoint g₁.support g₂.support) :
(g₁ + g₂).support = g₁.support g₂.support
instance Finsupp.instAddZeroClass {ι : Type u_1} {M : Type u_3} [AddZeroClass M] :
Equations
noncomputable def Finsupp.addEquivFunOnFinite {M : Type u_3} [AddZeroClass M] {ι : Type u_7} [Finite ι] :
(ι →₀ M) ≃+ (ιM)

When ι is finite and M is an AddMonoid, then Finsupp.equivFunOnFinite gives an AddEquiv

Equations
Instances For
    noncomputable def AddEquiv.finsuppUnique {M : Type u_3} [AddZeroClass M] {ι : Type u_7} [Unique ι] :
    (ι →₀ M) ≃+ M

    AddEquiv between (ι →₀ M) and M, when ι has a unique element

    Equations
    Instances For
      instance Finsupp.instIsCancelAdd {ι : Type u_1} {M : Type u_3} [AddZeroClass M] [IsCancelAdd M] :
      def Finsupp.applyAddHom {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (a : ι) :
      (ι →₀ M) →+ M

      Evaluation of a function f : ι →₀ M at a point as an additive monoid homomorphism.

      See Finsupp.lapply in Mathlib/LinearAlgebra/Finsupp/Defs.lean for the stronger version as a linear map.

      Equations
      Instances For
        @[simp]
        theorem Finsupp.applyAddHom_apply {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (a : ι) (g : ι →₀ M) :
        (applyAddHom a) g = g a
        noncomputable def Finsupp.coeFnAddHom {ι : Type u_1} {M : Type u_3} [AddZeroClass M] :
        (ι →₀ M) →+ ιM

        Coercion from a Finsupp to a function type is an AddMonoidHom.

        Equations
        Instances For
          @[simp]
          theorem Finsupp.coeFnAddHom_apply {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (a✝ : ι →₀ M) (a : ι) :
          coeFnAddHom a✝ a = a✝ a
          theorem Finsupp.mapRange_add {ι : Type u_1} {M : Type u_3} {N : Type u_4} [AddZeroClass M] [AddZeroClass N] {f : MN} {hf : f 0 = 0} (hf' : ∀ (x y : M), f (x + y) = f x + f y) (v₁ v₂ : ι →₀ M) :
          mapRange f hf (v₁ + v₂) = mapRange f hf v₁ + mapRange f hf v₂
          theorem Finsupp.mapRange_add' {ι : Type u_1} {F : Type u_2} {M : Type u_3} {N : Type u_4} [AddZeroClass M] [AddZeroClass N] [FunLike F M N] [AddMonoidHomClass F M N] {f : F} (g₁ g₂ : ι →₀ M) :
          mapRange f (g₁ + g₂) = mapRange f g₁ + mapRange f g₂
          def Finsupp.embDomain.addMonoidHom {ι : Type u_1} {F : Type u_2} {M : Type u_3} [AddZeroClass M] (f : ι F) :
          (ι →₀ M) →+ F →₀ M

          Bundle Finsupp.embDomain f as an additive map from ι →₀ M to F →₀ M.

          Equations
          Instances For
            @[simp]
            theorem Finsupp.embDomain.addMonoidHom_apply {ι : Type u_1} {F : Type u_2} {M : Type u_3} [AddZeroClass M] (f : ι F) (v : ι →₀ M) :
            @[simp]
            theorem Finsupp.embDomain_add {ι : Type u_1} {F : Type u_2} {M : Type u_3} [AddZeroClass M] (f : ι F) (v w : ι →₀ M) :
            embDomain f (v + w) = embDomain f v + embDomain f w
            instance Finsupp.instNatSMul {ι : Type u_1} {M : Type u_3} [AddMonoid M] :
            SMul (ι →₀ M)

            Note the general SMul instance for Finsupp doesn't apply as is not distributive unless F i's addition is commutative.

            Equations
            instance Finsupp.instAddMonoid {ι : Type u_1} {M : Type u_3} [AddMonoid M] :
            Equations
            • One or more equations did not get rendered due to their size.
            instance Finsupp.instAddCommMonoid {ι : Type u_1} {M : Type u_3} [AddCommMonoid M] :
            Equations
            instance Finsupp.instNeg {ι : Type u_1} {G : Type u_5} [NegZeroClass G] :
            Neg (ι →₀ G)
            Equations
            @[simp]
            theorem Finsupp.coe_neg {ι : Type u_1} {G : Type u_5} [NegZeroClass G] (g : ι →₀ G) :
            ⇑(-g) = -g
            theorem Finsupp.neg_apply {ι : Type u_1} {G : Type u_5} [NegZeroClass G] (g : ι →₀ G) (a : ι) :
            (-g) a = -g a
            theorem Finsupp.mapRange_neg {ι : Type u_1} {G : Type u_5} {H : Type u_6} [NegZeroClass G] [NegZeroClass H] {f : GH} {hf : f 0 = 0} (hf' : ∀ (x : G), f (-x) = -f x) (v : ι →₀ G) :
            mapRange f hf (-v) = -mapRange f hf v
            theorem Finsupp.mapRange_neg' {ι : Type u_1} {F : Type u_2} {G : Type u_5} {H : Type u_6} [AddGroup G] [SubtractionMonoid H] [FunLike F G H] [AddMonoidHomClass F G H] {f : F} (v : ι →₀ G) :
            mapRange f (-v) = -mapRange f v
            instance Finsupp.instSub {ι : Type u_1} {G : Type u_5} [SubNegZeroMonoid G] :
            Sub (ι →₀ G)
            Equations
            @[simp]
            theorem Finsupp.coe_sub {ι : Type u_1} {G : Type u_5} [SubNegZeroMonoid G] (g₁ g₂ : ι →₀ G) :
            ⇑(g₁ - g₂) = g₁ - g₂
            theorem Finsupp.sub_apply {ι : Type u_1} {G : Type u_5} [SubNegZeroMonoid G] (g₁ g₂ : ι →₀ G) (a : ι) :
            (g₁ - g₂) a = g₁ a - g₂ a
            theorem Finsupp.mapRange_sub {ι : Type u_1} {G : Type u_5} {H : Type u_6} [SubNegZeroMonoid G] [SubNegZeroMonoid H] {f : GH} {hf : f 0 = 0} (hf' : ∀ (x y : G), f (x - y) = f x - f y) (v₁ v₂ : ι →₀ G) :
            mapRange f hf (v₁ - v₂) = mapRange f hf v₁ - mapRange f hf v₂
            theorem Finsupp.mapRange_sub' {ι : Type u_1} {F : Type u_2} {G : Type u_5} {H : Type u_6} [AddGroup G] [SubtractionMonoid H] [FunLike F G H] [AddMonoidHomClass F G H] {f : F} (v₁ v₂ : ι →₀ G) :
            mapRange f (v₁ - v₂) = mapRange f v₁ - mapRange f v₂
            instance Finsupp.instIntSMul {ι : Type u_1} {G : Type u_5} [AddGroup G] :
            SMul (ι →₀ G)

            Note the general SMul instance for Finsupp doesn't apply as is not distributive unless F i's addition is commutative.

            Equations
            instance Finsupp.instAddGroup {ι : Type u_1} {G : Type u_5} [AddGroup G] :
            Equations
            • One or more equations did not get rendered due to their size.
            instance Finsupp.instAddCommGroup {ι : Type u_1} {G : Type u_5} [AddCommGroup G] :
            Equations
            @[simp]
            theorem Finsupp.support_neg {ι : Type u_1} {G : Type u_5} [AddGroup G] (f : ι →₀ G) :
            theorem Finsupp.support_sub {ι : Type u_1} {G : Type u_5} [DecidableEq ι] [AddGroup G] {f g : ι →₀ G} :