The category of finitely generated modules over a ring is essentially small #
This file proves that FGModuleCat R
, the category of finitely generated modules over a ring R
,
is essentially small, by providing an explicit small model. However, for applications, it is
recommended to use the standard CategoryTheory.SmallModel (FGModuleCat R)
instead.
A (category-theoretically) small version of FGModuleCat R
. This is used to prove that
FGModuleCat R
is essentially small. For actual use, it might be recommended to use the canonical
CategoryTheory.SmallModel
instead of this construction.
- n : ℕ
Instances For
Equations
- FGModuleRepr.instCoeSortType R = { coe := FGModuleRepr.repr }
Equations
Equations
A non-canonical representation of a finite module (as a quotient of $$R^n$$).
Instances For
The non-canonical representation ofFinite
of a finite module is actually isomorphic to
the given module.
Equations
Instances For
Equations
- FGModuleRepr.instCategory R = CategoryTheory.InducedCategory.category fun (x : FGModuleRepr R) => FGModuleCat.of R x.repr
Equations
- FGModuleRepr.instSmallCategory R = { toCategoryStruct := (FGModuleRepr.instCategory R).toCategoryStruct, id_comp := ⋯, comp_id := ⋯, assoc := ⋯ }
The canonical embedding of this small category to the canonical (large) category
FGModuleCat R
.
Equations
- FGModuleRepr.embed R = (CategoryTheory.inducedFunctor fun (x : FGModuleRepr R) => FGModuleCat.of R x.repr).comp (FGModuleCat.ulift R)