Documentation

Mathlib.Algebra.Category.FGModuleCat.EssentiallySmall

The category of finitely generated modules over a ring is essentially small #

This file proves that FGModuleCat R, the category of finitely generated modules over a ring R, is essentially small, by providing an explicit small model. However, for applications, it is recommended to use the standard CategoryTheory.SmallModel (FGModuleCat R) instead.

structure FGModuleRepr (R : Type u) [CommRing R] :

A (category-theoretically) small version of FGModuleCat R. This is used to prove that FGModuleCat R is essentially small. For actual use, it might be recommended to use the canonical CategoryTheory.SmallModel instead of this construction.

  • n :

    The natural number n that defines the module as a quotient of Fin n → R (i.e. R^n).

  • S : Submodule R (Fin self.nR)

    The kernel of the surjective map from Fin n → R (i.e. R^n) to the module represented.

Instances For
    def FGModuleRepr.repr {R : Type u} [CommRing R] (x : FGModuleRepr R) :

    The finite module represented by an object of the type FGModuleRepr R, which is the quotient of Fin n → R (i.e. $$R^n$$) by the submodule S provided.

    Equations
    Instances For
      noncomputable def FGModuleRepr.ofFinite (R : Type u) [CommRing R] (M : Type v) [AddCommGroup M] [Module R M] [Module.Finite R M] :

      A non-canonical representation of a finite module (as a quotient of $$R^n$$).

      Equations
      Instances For
        noncomputable def FGModuleRepr.ofFiniteEquiv (R : Type u) [CommRing R] (M : Type v) [AddCommGroup M] [Module R M] [Module.Finite R M] :

        The non-canonical representation ofFinite of a finite module is actually isomorphic to the given module.

        Equations
        Instances For
          Equations

          The canonical embedding of this small category to the canonical (large) category FGModuleCat R.

          Equations
          Instances For