class
Lean.Grind.Ring.IsOrdered
(R : Type u)
[Ring R]
[Preorder R]
extends Lean.Grind.IntModule.IsOrdered R :
In a strict ordered semiring, we have
0 < 1
.In a strict ordered semiring, we can multiply an inequality
a < b
on the left by a positive element0 < c
to obtainc * a < c * b
.In a strict ordered semiring, we can multiply an inequality
a < b
on the right by a positive element0 < c
to obtaina * c < b * c
.
Instances
theorem
Lean.Grind.Ring.IsOrdered.zero_le_one
{R : Type u}
[Ring R]
[PartialOrder R]
[IsOrdered R]
:
theorem
Lean.Grind.Ring.IsOrdered.not_one_lt_zero
{R : Type u}
[Ring R]
[PartialOrder R]
[IsOrdered R]
:
theorem
Lean.Grind.Ring.IsOrdered.mul_nonneg
{R : Type u}
[Ring R]
[PartialOrder R]
[IsOrdered R]
{a b : R}
(h₁ : 0 ≤ a)
(h₂ : 0 ≤ b)
:
theorem
Lean.Grind.Ring.IsOrdered.mul_nonneg_of_nonpos_of_nonpos
{R : Type u}
[Ring R]
[PartialOrder R]
[IsOrdered R]
{a b : R}
(h₁ : a ≤ 0)
(h₂ : b ≤ 0)
:
theorem
Lean.Grind.Ring.IsOrdered.mul_nonpos_of_nonneg_of_nonpos
{R : Type u}
[Ring R]
[PartialOrder R]
[IsOrdered R]
{a b : R}
(h₁ : 0 ≤ a)
(h₂ : b ≤ 0)
:
theorem
Lean.Grind.Ring.IsOrdered.mul_nonpos_of_nonpos_of_nonneg
{R : Type u}
[Ring R]
[PartialOrder R]
[IsOrdered R]
{a b : R}
(h₁ : a ≤ 0)
(h₂ : 0 ≤ b)
:
theorem
Lean.Grind.Ring.IsOrdered.mul_pos
{R : Type u}
[Ring R]
[PartialOrder R]
[IsOrdered R]
{a b : R}
(h₁ : 0 < a)
(h₂ : 0 < b)
:
theorem
Lean.Grind.Ring.IsOrdered.mul_pos_of_neg_of_neg
{R : Type u}
[Ring R]
[PartialOrder R]
[IsOrdered R]
{a b : R}
(h₁ : a < 0)
(h₂ : b < 0)
:
theorem
Lean.Grind.Ring.IsOrdered.mul_neg_of_pos_of_neg
{R : Type u}
[Ring R]
[PartialOrder R]
[IsOrdered R]
{a b : R}
(h₁ : 0 < a)
(h₂ : b < 0)
:
theorem
Lean.Grind.Ring.IsOrdered.mul_neg_of_neg_of_pos
{R : Type u}
[Ring R]
[PartialOrder R]
[IsOrdered R]
{a b : R}
(h₁ : a < 0)
(h₂ : 0 < b)
:
theorem
Lean.Grind.Ring.IsOrdered.sq_nonneg
{R : Type u}
[Ring R]
[LinearOrder R]
[IsOrdered R]
{a : R}
:
theorem
Lean.Grind.Ring.IsOrdered.sq_pos
{R : Type u}
[Ring R]
[LinearOrder R]
[IsOrdered R]
{a : R}
(h : a ≠ 0)
: