Documentation

Init.Grind.Ordered.Order

class Lean.Grind.Preorder (α : Type u) extends LE α, LT α :

A preorder is a reflexive, transitive relation with a < b defined in the obvious way.

Instances
    theorem Lean.Grind.Preorder.le_of_lt {α : Type u} [Preorder α] {a b : α} (h : a < b) :
    a b
    theorem Lean.Grind.Preorder.lt_of_lt_of_le {α : Type u} [Preorder α] {a b c : α} (h₁ : a < b) (h₂ : b c) :
    a < c
    theorem Lean.Grind.Preorder.lt_of_le_of_lt {α : Type u} [Preorder α] {a b c : α} (h₁ : a b) (h₂ : b < c) :
    a < c
    theorem Lean.Grind.Preorder.lt_trans {α : Type u} [Preorder α] {a b c : α} (h₁ : a < b) (h₂ : b < c) :
    a < c
    theorem Lean.Grind.Preorder.lt_irrefl {α : Type u} [Preorder α] (a : α) :
    ¬a < a
    theorem Lean.Grind.Preorder.ne_of_lt {α : Type u} [Preorder α] {a b : α} (h : a < b) :
    a b
    theorem Lean.Grind.Preorder.ne_of_gt {α : Type u} [Preorder α] {a b : α} (h : a > b) :
    a b
    theorem Lean.Grind.Preorder.not_ge_of_lt {α : Type u} [Preorder α] {a b : α} (h : a < b) :
    ¬b a
    theorem Lean.Grind.Preorder.not_gt_of_lt {α : Type u} [Preorder α] {a b : α} (h : a < b) :
    ¬a > b
    Instances
      theorem Lean.Grind.PartialOrder.le_iff_lt_or_eq {α : Type u} [PartialOrder α] {a b : α} :
      a b a < b a = b
      Instances
        theorem Lean.Grind.LinearOrder.trichotomy {α : Type u} [LinearOrder α] (a b : α) :
        a < b a = b b < a