Komlos lemmas #
theorem
komlos_norm
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{f : ℕ → E}
(h_bdd : ∃ (M : ℝ), ∀ (n : ℕ), ‖f n‖ ≤ M)
:
∃ (g : ℕ → E) (x : E),
(∀ (n : ℕ), g n ∈ (convexHull ℝ) (Set.range fun (m : ℕ) => f (n + m))) ∧ Filter.Tendsto g Filter.atTop (nhds x)
theorem
komlos_ennreal
{Ω : Type u_2}
{mΩ : MeasurableSpace Ω}
(X : ℕ → Ω → ENNReal)
(hX : ∀ (n : ℕ), Measurable (X n))
{P : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure P]
:
∃ (Y : ℕ → Ω → ENNReal) (Y_lim : Ω → ENNReal),
(∀ (n : ℕ), Y n ∈ (convexHull ENNReal) (Set.range fun (m : ℕ) => X (n + m))) ∧ Measurable Y_lim ∧ ∀ᵐ (ω : Ω) ∂P, Filter.Tendsto (fun (x : ℕ) => Y x ω) Filter.atTop (nhds (Y_lim ω))