Gram Matrices #
This file defines Gram matrices and proves their positive semi-definiteness.
Results require RCLike ð
.
Main definition #
Matrix.Gram
: theMatrix n n ð
withâŠv i, v jâŦ
ati j : n
, wherev : n â Îą
for anInnerProductSpace ð Îą
.
Main results #
Matrix.IsGram.PosSemidef
Gram matrices are positive semi-definite.
def
Matrix.gram
{E : Type u_1}
{n : Type u_2}
(ð : Type u_5)
[RCLike ð]
[SeminormedAddCommGroup E]
[InnerProductSpace ð E]
(v : n â E)
:
Matrix n n ð
The entries of a Gram matrix are inner products of vectors in an inner product space.
Equations
- Matrix.gram ð v = Matrix.of fun (i j : n) => inner ð (v i) (v j)
Instances For
theorem
Matrix.gram_apply
{E : Type u_1}
{n : Type u_2}
{ð : Type u_4}
[RCLike ð]
[SeminormedAddCommGroup E]
[InnerProductSpace ð E]
{v : n â E}
(i j : n)
:
For the matrix gram ð v
, the entry at i j : n
equals âŠv i, v jâŦ
.
theorem
Matrix.gram_isHermitian
{E : Type u_1}
{n : Type u_2}
{ð : Type u_4}
[RCLike ð]
[SeminormedAddCommGroup E]
[InnerProductSpace ð E]
{v : n â E}
:
(gram ð v).IsHermitian
A Gram matrix is Hermitian.
theorem
Matrix.gram_posSemidef
{E : Type u_1}
{n : Type u_2}
{ð : Type u_4}
[RCLike ð]
[SeminormedAddCommGroup E]
[InnerProductSpace ð E]
[Fintype n]
{v : n â E}
:
(gram ð v).PosSemidef
A Gram matrix is positive semidefinite.