Documentation

BrownianMotion.Auxiliary.SetAlgebra

structure MeasureTheory.MonotoneClass (α : Type u_2) :
Type u_2

A monotone class is a collection of subsets of a type α that is closed under countable monotone union and countable antitone intersection.

  • Has : Set αProp

    Predicate saying that a given set is contained in the Monotone Class.

  • has_iUnion {A : Set α} : (∀ (n : ), self.Has (A n))Monotone Aself.Has (⋃ (n : ), A n)

    A monotone class is closed under countable monotone union.

  • has_iInter (B : Set α) : (∀ (n : ), self.Has (B n))Antitone Bself.Has (⋂ (n : ), B n)

    A monotone class is closed under countable antitone intersection.

Instances For
    theorem MeasureTheory.MonotoneClass.ext {α : Type u_1} {C₁ C₂ : MonotoneClass α} :
    (∀ (s : Set α), C₁.Has s C₂.Has s)C₁ = C₂
    theorem MeasureTheory.MonotoneClass.ext_iff {α : Type u_1} {C₁ C₂ : MonotoneClass α} :
    C₁ = C₂ ∀ (s : Set α), C₁.Has s C₂.Has s
    theorem MeasureTheory.MonotoneClass.has_iUnion' {α : Type u_1} (C : MonotoneClass α) {β : Type u_2} [Nonempty β] [Countable β] [LinearOrder β] {A : βSet α} (hC : ∀ (i : β), C.Has (A i)) (h_mono : Monotone A) :
    C.Has (⋃ (i : β), A i)
    theorem MeasureTheory.MonotoneClass.has_iInter' {α : Type u_1} (C : MonotoneClass α) {β : Type u_2} [Nonempty β] [Countable β] [LinearOrder β] {A : βSet α} (hC : ∀ (i : β), C.Has (A i)) (h_mono : Antitone A) :
    C.Has (⋂ (i : β), A i)
    theorem MeasureTheory.MonotoneClass.le_def {α : Type u_1} {C₁ C₂ : MonotoneClass α} :
    C₁ C₂ C₁.Has C₂.Has
    Equations
    • One or more equations did not get rendered due to their size.
    theorem MeasurableSpace.DynkinSystem.has_iUnion_of_mono {α : Type u_3} (d : DynkinSystem α) {A : Set α} (h_mono : Monotone A) (hA : ∀ (i : ), d.Has (A i)) :
    d.Has (⋃ (i : ), A i)
    theorem MeasurableSpace.DynkinSystem.has_iInter_of_anti {α : Type u_3} (d : DynkinSystem α) {B : Set α} (h_anti : Antitone B) (hB : ∀ (i : ), d.Has (B i)) :
    d.Has (⋂ (i : ), B i)

    Every Dynkin system forms a Monotone class.

    Equations
    Instances For
      inductive MeasureTheory.MonotoneClass.GenerateHas {α : Type u_1} (s : Set (Set α)) :
      Set αProp

      The least MonotoneClass containing a collection of basic sets. This inductive type gives the underlying collection of sets.

      Instances For

        The least MonotoneClass containing a collection of basic sets.

        Equations
        Instances For
          theorem MeasureTheory.MonotoneClass.generateHas_compl {α : Type u_1} {s : Set (Set α)} (hs : IsSetAlgebra s) {t : Set α} (ht : (generate s).Has t) :
          theorem MeasureTheory.MonotoneClass.generateHas_inter {α : Type u_1} {s : Set (Set α)} (hs : IsSetAlgebra s) {t u : Set α} (ht : (generate s).Has t) (hu : (generate s).Has u) :
          (generate s).Has (t u)

          If s is an algebra of sets, then the monotone class generated by s is closed under intersections.

          If s is an algebra of sets, then the monotone class it generates is an algebra of sets.

          theorem MeasureTheory.MonotoneClass.generate_le {α : Type u_1} (C : MonotoneClass α) {s : Set (Set α)} (h : ts, C.Has t) :

          The monotone class generated by s is the smallest monotone class containing s.

          If a set belongs to the monotone class generated by s, then it is measurable for the σ-algebra generated by s.

          If a Monotone class is a set algebra, then it forms a σ-algebra.

          Equations
          • C.toMeasurableSpace h = { MeasurableSet' := C.Has, measurableSet_empty := , measurableSet_compl := , measurableSet_iUnion := }
          Instances For

            Monotone Class theorem:

            Given a set algebra s. Then the monotone class generated by s is equal to the σ-algebra generated by s.

            theorem MeasureTheory.induction_on_monotone {α : Type u_1} {m : MeasurableSpace α} {C : (s : Set α) → MeasurableSet sProp} {s : Set (Set α)} (h_eq : m = MeasurableSpace.generateFrom s) (h_inter : IsSetAlgebra s) (basic : ∀ (t : Set α) (ht : t s), C t ) (iUnion : ∀ (A : Set α), Monotone A∀ (hfm : ∀ (i : ), MeasurableSet (A i)), (∀ (i : ), C (A i) )C (⋃ (i : ), A i) ) (iInter : ∀ (A : Set α), Antitone A∀ (hfm : ∀ (i : ), MeasurableSet (A i)), (∀ (i : ), C (A i) )C (⋂ (i : ), A i) ) (t : Set α) (ht : MeasurableSet t) :
            C t ht

            Induction principle for measurable sets based on the Monotone Class theorem. If s is a set algebra that generates the σ-algebra on α and a predicate C defined on measurable sets is true

            • on each set t ∈ s;
            • on the union of monotone sequences of measurable sets that satisfy C;
            • on the intersection of antitone sequences of measurable sets that satisfy C,

            then it is true on all measurable sets in α.