theorem
Matrix.PosSemidef.nonneg_apply_self
{n : Type u_1}
{R : Type u_2}
[Fintype n]
[CommRing R]
[PartialOrder R]
[StarRing R]
{M : Matrix n n R}
(hM : M.PosSemidef)
(i : n)
:
def
LinearMap.mkContinuous₂OfFiniteDimensional
{E : Type u_1}
{F : Type u_2}
{G : Type u_3}
{𝕜 : Type u_4}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedAddCommGroup G]
[NontriviallyNormedField 𝕜]
[CompleteSpace 𝕜]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜 F]
[NormedSpace 𝕜 G]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(f : E →ₗ[𝕜] F →ₗ[𝕜] G)
:
Given a bilinear map whose codomains are finite dimensional, outputs the continuous version.
Equations
- f.mkContinuous₂OfFiniteDimensional = LinearMap.toContinuousLinearMap { toFun := fun (x : E) => LinearMap.toContinuousLinearMap (f x), map_add' := ⋯, map_smul' := ⋯ }
Instances For
@[simp]
theorem
LinearMap.mkContinuous₂OfFiniteDimensional_apply
{E : Type u_1}
{F : Type u_2}
{G : Type u_3}
{𝕜 : Type u_4}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedAddCommGroup G]
[NontriviallyNormedField 𝕜]
[CompleteSpace 𝕜]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜 F]
[NormedSpace 𝕜 G]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(f : E →ₗ[𝕜] F →ₗ[𝕜] G)
(x : E)
(y : F)
:
theorem
OrthonormalBasis.inner_eq
{𝕜 : Type u_1}
{E : Type u_2}
{ι : Type u_3}
[NormedAddCommGroup E]
[RCLike 𝕜]
[InnerProductSpace 𝕜 E]
[Fintype ι]
[DecidableEq ι]
(b : OrthonormalBasis ι 𝕜 E)
{i j : ι}
:
theorem
OrthonormalBasis.norm_sq_eq_sum_sq_inner_right
{ι : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[Fintype ι]
(b : OrthonormalBasis ι ℝ E)
(x : E)
:
theorem
OrthonormalBasis.norm_sq_eq_sum_sq_inner_left
{ι : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[Fintype ι]
(b : OrthonormalBasis ι ℝ E)
(x : E)
:
theorem
basisFun_inner
{ι : Type u_1}
{𝕜 : Type u_2}
[Fintype ι]
[RCLike 𝕜]
(x : EuclideanSpace 𝕜 ι)
(i : ι)
:
noncomputable def
OrthonormalBasis.equiv
{ι : Type u_1}
{ι' : Type u_2}
{𝕜 : Type u_3}
{E : Type u_4}
{E' : Type u_5}
[Fintype ι]
[Fintype ι']
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
[NormedAddCommGroup E']
[InnerProductSpace 𝕜 E']
(b : OrthonormalBasis ι 𝕜 E)
(b' : OrthonormalBasis ι' 𝕜 E')
(e : ι ≃ ι')
:
The LinearIsometryEquiv
which maps an orthonormal basis to another. This is a convenience
wrapper around Orthonormal.equiv
.
Instances For
theorem
OrthonormalBasis.equiv_apply_basis
{ι : Type u_1}
{ι' : Type u_2}
{𝕜 : Type u_3}
{E : Type u_4}
{E' : Type u_5}
[Fintype ι]
[Fintype ι']
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
[NormedAddCommGroup E']
[InnerProductSpace 𝕜 E']
(b : OrthonormalBasis ι 𝕜 E)
(b' : OrthonormalBasis ι' 𝕜 E')
(e : ι ≃ ι')
(i : ι)
:
theorem
OrthonormalBasis.equiv_apply
{ι : Type u_1}
{ι' : Type u_2}
{𝕜 : Type u_3}
{E : Type u_4}
{E' : Type u_5}
[Fintype ι]
[Fintype ι']
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
[NormedAddCommGroup E']
[InnerProductSpace 𝕜 E']
(b : OrthonormalBasis ι 𝕜 E)
(b' : OrthonormalBasis ι' 𝕜 E')
(e : ι ≃ ι')
(x : E)
:
theorem
OrthonormalBasis.equiv_apply_euclideanSpace
{ι : Type u_1}
{𝕜 : Type u_3}
{E : Type u_4}
[Fintype ι]
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
(b : OrthonormalBasis ι 𝕜 E)
(x : EuclideanSpace 𝕜 ι)
:
@[simp]
theorem
inner_toDual_symm_eq_self
{𝕜 : Type u_1}
{E : Type u_2}
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
[CompleteSpace E]
(L : NormedSpace.Dual 𝕜 E)
:
theorem
OrthonormalBasis.norm_dual
{ι : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[Fintype ι]
(b : OrthonormalBasis ι ℝ E)
(L : NormedSpace.Dual ℝ E)
:
@[simp]
theorem
LinearIsometryEquiv.coe_coe_eq_coe
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
(f : E ≃ₗᵢ[𝕜] F)
: