def
MeasureTheory.Filtration.indexComap
{ι : Type u_1}
{ι' : Type u_2}
{Ω : Type u_3}
[Preorder ι]
[Preorder ι']
{mΩ : MeasurableSpace Ω}
(𝓕 : Filtration ι mΩ)
{f : ι' → ι}
(hf : Monotone f)
:
Filtration ι' mΩ
Given a filtration on ι and a monotone mapping ι' → ι, construct a filtration on ι'.
This is most commonly used to restrict a filtration to a subset of the index set.
Equations
- 𝓕.indexComap hf = { seq := fun (k : ι') => ↑𝓕 (f k), mono' := ⋯, le' := ⋯ }
Instances For
@[simp]
theorem
MeasureTheory.Filtration.indexComap_seq
{ι : Type u_1}
{ι' : Type u_2}
{Ω : Type u_3}
[Preorder ι]
[Preorder ι']
{mΩ : MeasurableSpace Ω}
(𝓕 : Filtration ι mΩ)
{f : ι' → ι}
(hf : Monotone f)
(k : ι')
:
theorem
MeasureTheory.StronglyAdapted.indexComap
{ι : Type u_1}
{ι' : Type u_2}
{Ω : Type u_3}
[Preorder ι]
[Preorder ι']
{mΩ : MeasurableSpace Ω}
{𝓕 : Filtration ι mΩ}
{f : ι' → ι}
{E : Type u_4}
[TopologicalSpace E]
{X : ι → Ω → E}
(hX : StronglyAdapted 𝓕 X)
(hf : Monotone f)
:
StronglyAdapted (𝓕.indexComap hf) (X ∘ f)