Documentation

BrownianMotion.Auxiliary.Filtration

def MeasureTheory.Filtration.indexComap {ι : Type u_1} {ι' : Type u_2} {Ω : Type u_3} [Preorder ι] [Preorder ι'] { : MeasurableSpace Ω} (𝓕 : Filtration ι ) {f : ι'ι} (hf : Monotone f) :
Filtration ι'

Given a filtration on ι and a monotone mapping ι' → ι, construct a filtration on ι'. This is most commonly used to restrict a filtration to a subset of the index set.

Equations
  • 𝓕.indexComap hf = { seq := fun (k : ι') => 𝓕 (f k), mono' := , le' := }
Instances For
    @[simp]
    theorem MeasureTheory.Filtration.indexComap_seq {ι : Type u_1} {ι' : Type u_2} {Ω : Type u_3} [Preorder ι] [Preorder ι'] { : MeasurableSpace Ω} (𝓕 : Filtration ι ) {f : ι'ι} (hf : Monotone f) (k : ι') :
    (𝓕.indexComap hf) k = 𝓕 (f k)
    theorem MeasureTheory.StronglyAdapted.indexComap {ι : Type u_1} {ι' : Type u_2} {Ω : Type u_3} [Preorder ι] [Preorder ι'] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {f : ι'ι} {E : Type u_4} [TopologicalSpace E] {X : ιΩE} (hX : StronglyAdapted 𝓕 X) (hf : Monotone f) :