
LeanBandits
A Lean package for bandit algorithms

Rémy Degenne

July 21, 2025

Chapter 1

Introduction

A bandit algorithm sequentially chooses actions and then observes rewards, whose distribution
depends on the action chosen. The algorithm does not know the distribution of the rewards and
sees only a reward from the chosen action at any given time. A key part of the interaction is that
the algorithm can choose the next action based on all the previous actions and rewards. The
goal of the algorithm is typically to maximize the cumulative reward over time. The researcher
studying bandit algorithms is interested in the performance of the algorithm, which is measured
by the “regret” 𝑅𝑇 after choosing 𝑇 actions, that is the difference between the cumulative reward
of always playing the best action and the cumulative reward of the algorithm. A theoretical
guarantee will be of the form 𝔼[𝑅𝑇] ≤ 𝑓(𝑇) for some function 𝑓 . Here the expectation is taken
over the randomness of the algorithm and the rewards. In parallel to the theoretical study, the
researcher may also be interested in the practical performance of the algorithm, which is usually
measured by the average regret over several runs of the algorithm with rewards sampled from
standard probability distributions.

From that description, we highlight three key components of research work on bandit algo-
rithms:

1. A bandit algorithm is both a subject of theoretical study and a practical tool, that we
should be able to implement and run,

2. the bandit model defines a probability space, on which we want to take expectations, and
the theoretical study deals with random variables on that space using tools like concentra-
tion inequalities,

3. for the experimental part, we need to be able to sample rewards from a range of probability
distributions.

1

Chapter 2

Stochastic multi-armed bandits

2.1 Bandit model and probability space
Definition 1 (Bandit). The interaction of an algorithm with a stochastic bandit with arms in
𝒜 (a measurable space) and real rewards is described by the following data:

• 𝜈 ∶ 𝒜 ⇝ ℝ, a Markov kernel, conditional distribution of the rewards given the arm pulled,

• for all 𝑡 ∈ ℕ, a policy 𝜋𝑡 ∶ (𝒜 × ℝ)𝑡+1 ⇝ 𝒜, a Markov kernel which gives the distribution
of the arm to pull at time 𝑡 + 1 given the history of previous pulls and rewards,

• 𝑃0 ∈ 𝒫(𝒜), a probability measure that gives the distribution of the first arm to pull.

Definition 2 (Bandit probability space). By an application of the Ionescu-Tulcea theorem, a
bandit ℬ = (𝜈, 𝜋, 𝑃0) defines a probability distribution on the space Ω ∶= (𝒜 × ℝ)ℕ, the space of
infinite sequences of arms and rewards. We denote that distribution by ℙ. TODO: explain how
the probability distribution is constructed.

Definition 3 (Arms, rewards and history). For 𝑡 ∈ ℕ, we denote by 𝐴𝑡 the arm pulled at
time 𝑡 and by 𝑋𝑡 the reward received at time 𝑡. Formally, these are measurable functions on
Ω = (𝒜 × ℝ)ℕ, defined by 𝐴𝑡(𝜔) = 𝜔𝑡,1 and 𝑋𝑡(𝜔) = 𝜔𝑡,2. We denote by 𝐻𝑡 ∈ (𝒜 × ℝ)𝑡+1 the
history of pulls and rewards up to and including time 𝑡, that is 𝐻𝑡 = ((𝐴0, 𝑋0), … , (𝐴𝑡, 𝑋𝑡)).
Formally, 𝐻𝑡(𝜔) = (𝜔0, … , 𝜔𝑡).
Lemma 4. The conditional distribution of the reward 𝑋𝑡 given the arm 𝐴𝑡 in the bandit proba-
bility space (Ω, ℙ) is 𝜈(𝐴𝑡).
Proof.

Lemma 5. The law of the arm 𝐴0 in the bandit probability space (Ω, ℙ) is 𝑃0.

Proof.

Lemma 6. The conditional distribution of the arm 𝐴𝑡+1 given the history 𝐻𝑡 in the bandit
probability space (Ω, ℙ) is 𝜋𝑡(𝐻𝑡).
Proof.

2

2.2 Regret and other bandit quantities
Definition 7. For an arm 𝑎 ∈ 𝒜, we denote by 𝜇𝑎 the mean of the rewards for that arm, that
is 𝜇𝑎 = 𝜈(𝑎)[𝑋]. We denote by 𝜇∗ the mean of the best arm, that is 𝜇∗ = max𝑎∈𝒜 𝜇𝑎.

Definition 8 (Regret). The regret 𝑅𝑇 of a sequence of arms 𝐴0, … , 𝐴𝑇 −1 after 𝑇 pulls is the
difference between the cumulative reward of always playing the best arm and the cumulative
reward of the sequence:

𝑅𝑇 = 𝑇 𝜇∗ −
𝑇 −1
∑
𝑡=0

𝜇𝐴𝑡
.

Definition 9. For an arm 𝑎 ∈ 𝒜, its gap is defined as the difference between the mean of the
best arm and the mean of that arm: Δ𝑎 = 𝜇∗ − 𝜇𝑎.

Definition 10. For an arm 𝑎 ∈ 𝒜 and a time 𝑡 ∈ ℕ, we denote by 𝑁𝑡,𝑎 the number of times
that arm 𝑎 has been pulled before time 𝑡, that is 𝑁𝑡,𝑎 = ∑𝑡−1

𝑠=0 𝕀{𝐴𝑠 = 𝑎}.

Lemma 11. For 𝒜 finite, the regret 𝑅𝑇 can be expressed as a sum over the arms and their gaps:

𝑅𝑇 = ∑
𝑎∈𝒜

𝑁𝑇 ,𝑎Δ𝑎 .

Proof.

𝑅𝑇 = 𝑇 𝜇∗ −
𝑇 −1
∑
𝑡=0

𝜇𝐴𝑡
= 𝑇 𝜇∗ − ∑

𝑎∈𝒜

𝑇 −1
∑
𝑡=0

𝕀{𝐴𝑡 = 𝑎}𝜇𝑎

= 𝑇 𝜇∗ − ∑
𝑎∈𝒜

𝑁𝑇 ,𝑎𝜇𝑎

= ∑
𝑎∈𝒜

𝑁𝑇 ,𝑎𝜇∗ − ∑
𝑎∈𝒜

𝑁𝑇 ,𝑎𝜇𝑎

= ∑
𝑎∈𝒜

𝑁𝑇 ,𝑎Δ𝑎 .

2.3 Alternative model
The description of the bandit model above considers that at time 𝑡, a reward 𝑋𝑡 is generated,
depending on the arm 𝐴𝑡 pulled at that time. An alternative way to talk about that process
is to imagine that there is a stream of rewards from each arm, and that the algorithm sees the
first, then second, etc. reward from the arms at it pulls them. We introduce definitions to talk
about the 𝑛𝑡ℎ reward of an arm, and the time at which that reward is pulled.

Definition 12. For an arm 𝑎 ∈ 𝒜 and a time 𝑛 ∈ ℕ, we denote by 𝑇𝑛,𝑎 the time at which arm
𝑎 was pulled for the 𝑛-th time, that is 𝑇𝑛,𝑎 = min{𝑠 ∈ ℕ ∣ 𝑁𝑠+1,𝑎 = 𝑛}. Note that 𝑇𝑛,𝑎 can be
infinite if the arm is not pulled 𝑛 times.

Definition 13. For 𝑎 ∈ 𝒜 and 𝑛 ∈ ℕ, let 𝑍𝑛,𝑎 ∼ 𝜈(𝑎), independent of everything else. We
define 𝑌𝑛,𝑎 = 𝑋𝑇𝑛,𝑎

𝕀{𝑇𝑛,𝑎 < ∞} + 𝑍𝑛,𝑎𝕀{𝑇𝑛,𝑎 = ∞}, the reward received when pulling arm 𝑎 for
the 𝑛-th time if that time is finite, and equal to 𝑍𝑛,𝑎 otherwise.

3

TODO: that definition requires changing the probability space to Ω × ℝℕ×𝒜.

Lemma 14. 𝑇𝑁𝑡,𝑎,𝑎 ≤ 𝑡 − 1 < ∞ for all 𝑡 ∈ ℕ and 𝑎 ∈ 𝒜.

Proof. By definition, 𝑇𝑁𝑡,𝑎,𝑎 = min{𝑠 ∈ ℕ ∣ 𝑁𝑠+1,𝑎 = 𝑁𝑡,𝑎} ≤ 𝑡 − 1 < ∞.

Lemma 15. 𝑇𝑁𝑡+1,𝐴𝑡 ,𝐴𝑡
= 𝑡 for all 𝑡 ∈ ℕ.

Proof.

Lemma 16. 𝑌𝑁𝑡+1,𝐴𝑡 ,𝐴𝑡
= 𝑋𝑡 for all 𝑡 ∈ ℕ and 𝑎 ∈ 𝒜.

Proof. By Lemma 15, we have 𝑇𝑁𝑡+1,𝐴𝑡 ,𝐴𝑡
= 𝑡 < ∞, so 𝑌𝑁𝑡+1,𝐴𝑡 ,𝐴𝑡

= 𝑋𝑇𝑁𝑡+1,𝐴𝑡 ,𝐴𝑡
= 𝑋𝑡.

Lemma 17.
𝑁𝑡,𝑎

∑
𝑛=1

𝑌𝑛,𝑎 =
𝑡−1
∑
𝑠=0

𝕀{𝐴𝑠 = 𝑎}𝑋𝑠 .

Proof.

4

Chapter 3

Concentration inequalities

5

Chapter 4

Bandit algorithms

4.1 Explore-Then-Commit
Note: times start at 0 to be consistent with Lean.

Note: we will describe the algorithm by writing 𝐴𝑡 = ..., but our formal bandit model needs
a policy 𝜋𝑡 that gives the distribution of the arm to pull. What me mean is that 𝜋𝑡 is a Dirac
distribution at that arm.

Definition 18 (Explore-Then-Commit algorithm). The Explore-Then-Commit (ETC) algo-
rithm with parameter 𝑚 ∈ ℕ is defined as follows:

1. for 𝑡 < 𝐾𝑚, 𝐴𝑡 = 𝑡 mod 𝐾 (pull each arm 𝑚 times),

2. compute ̂𝐴∗
𝑚 = arg max𝑎∈[𝐾] ̂𝜇𝑎, where ̂𝜇𝑎 = 1

𝑚 ∑𝐾𝑚−1
𝑡=0 𝕀(𝐴𝑡 = 𝑎)𝑋𝑡 is the empirical mean

of the rewards for arm 𝑎,

3. for 𝑡 ≥ 𝐾𝑚, 𝐴𝑡 = ̂𝐴∗
𝑚 (pull the empirical best arm).

Lemma 19. For the Explore-Then-Commit algorithm with parameter 𝑚, for any arm 𝑎 ∈ [𝐾]
and any time 𝑡 ≥ 𝐾𝑚, we have

𝑁𝑡,𝑎 = 𝑚 + (𝑡 − 𝐾𝑚)𝕀{ ̂𝐴∗
𝑚 = 𝑎} .

Proof.

Theorem 20. Suppose that 𝜈(𝑎) is 1-sub-Gaussian for all arms 𝑎 ∈ [𝐾]. Then for the Explore-
Then-Commit algorithm with parameter 𝑚, the expected regret after 𝑇 pulls with 𝑇 ≥ 𝐾𝑚 is
bounded by

𝔼[𝑅𝑇] ≤ 𝑚
𝐾

∑
𝑎=1

Δ𝑎 + (𝑇 − 𝐾𝑚)
𝐾

∑
𝑎=1

Δ𝑎 exp (−𝑚Δ2
𝑎

4) .

Proof. By Lemma 11, we have 𝔼[𝑅𝑇] = ∑𝐾
𝑎=1 𝔼 [𝑁𝑇 ,𝑎] Δ𝑎 . It thus suffices to bound 𝔼[𝑁𝑇 ,𝑎] for

each arm 𝑎 with Δ𝑎 > 0. It suffices to prove that

𝔼[𝑁𝑇 ,𝑎] ≤ 𝑚 + (𝑇 − 𝐾𝑚) exp (−𝑚Δ2
𝑎

4) .

6

By definition of the Explore-Then-Commit algorithm (or by Lemma 19),

𝑁𝑇 ,𝑎 = 𝑚 + (𝑇 − 𝐾𝑚)𝕀{ ̂𝐴∗
𝑚 = 𝑎} .

It thus suffices to prove the inequality ℙ(̂𝐴∗
𝑚 = 𝑎) ≤ exp (− 𝑚Δ2

𝑎
4) for Δ𝑎 > 0.

ℙ(̂𝐴∗
𝑚 = 𝑎) ≤ ℙ(̂𝜇𝑎 ≥ ̂𝜇𝑎∗)

= ℙ (1
𝑚

𝐾𝑚−1
∑
𝑡=0

𝕀(𝐴𝑡 = 𝑎)𝑋𝑡 ≥ 1
𝑚

𝐾𝑚−1
∑
𝑡=0

𝕀(𝐴𝑡 = 𝑎∗)𝑋𝑡) .

TODO: here we need to state in a rigorous way that the empirical means are means of 𝑚 i.i.d.
samples 𝑌𝑎,𝑖 and 𝑌𝑎∗,𝑖 from the distributions 𝜈(𝑎) and 𝜈(𝑎∗).

= ℙ (1
𝑚

𝑚
∑
𝑖=1

𝑌𝑎,𝑖 ≥ 1
𝑚

𝑚
∑
𝑖=1

𝑌𝑎∗,𝑖)

= ℙ (1
𝑚

𝑚
∑
𝑖=1

(𝑌𝑎,𝑖 − 𝑌𝑎∗,𝑖 + Δ𝑎) ≥ Δ𝑎) .

𝑌𝑎,𝑖 − 𝑌𝑎∗,𝑖 + Δ𝑎 = (𝑌𝑎,𝑖 − 𝜇𝑎) − (𝑌𝑎∗,𝑖 − 𝜇𝑎∗) has mean 0 and is 2-sub-Gaussian, since 𝑌𝑎,𝑖 − 𝜇𝑎
and 𝑌𝑎∗,𝑖 − 𝜇𝑎∗ are 1-sub-Gaussian and independent. By Hoeffding’s inequality, we have

ℙ (1
𝑚

𝑚
∑
𝑖=1

(𝑌𝑎,𝑖 − 𝑌𝑎∗,𝑖 + Δ𝑎) ≥ Δ𝑎) ≤ exp (−𝑚Δ2
𝑎

4) .

This concludes the proof.

4.2 UCB

7

Chapter 5

Practical Algorithms

The algorithms presented in the previous chapters are theoretical algorithms, in the very basic
sense that they perform operations on real numbers to decide what they will sample, and those
numbers are not representable in a computer. In practice, we need to use floating point numbers
(or bounded integers or rationals), both for the algorithm and for the rewards that are sampled
from the environment.

We will want to perform experiments about the algorithms for which we have theoretical
guarantees, and that means using an implementation of the algorithms that can actually run on
a computer. However if we use float in the specification of the algorithms, we won’t be able to
prove anything, because those numbers lack any good algebraic properties.

Our strategy to resolve that conflict is to describe first the algorithm as a function of real
numbers, and then automatically generate a version of the algorithm that uses floating point
numbers, by using a translation tactic (similar to to_additive). The result is that we have
only one hand-written algorithm, and even though the theorems don’t directly apply to the
floating point version, we are assured that the only difference between the experimental and
theoretical algorithms is the result of the translation tactic. This is in stark contrast with the
situation in the literature, where the theoretical algorithm is specified in pseudo-code in LaTeX
and the experiments are done on a separately written implementation, typically in Python. The
experimental version may or may not be also implementing a series of tricks or optimizations of
constants.

TODO: describe the translation tactic. It should basically be like to_additive.

8

Chapter 6

Sampling

9

	Introduction
	Stochastic multi-armed bandits
	Bandit model and probability space
	Regret and other bandit quantities
	Alternative model

	Concentration inequalities
	Bandit algorithms
	Explore-Then-Commit
	UCB

	Practical Algorithms
	Sampling

