> Degenne Koolen Ménard

Pure Exploration Lower Bound Algorithm Results Conclusion

Pure Exploration by Solving Games

Rémy Degenne, Wouter M. Koolen and Pierre Ménard

October 27, 2019

Degenne Koolen Ménard

Pure Exploration Lower Bound Algorithm Results

Take two adversarial strategies for regret minimization. Add optimism.

Get one stochastic bandit algorithm for pure exploration.

Paper: Rémy Degenne, Wouter M. Koolen and Pierre Ménard, Non-Asymptotic Pure Exploration by Solving Games, NeurIPS 2019.

Main recipe

> Degenne Koolen Ménard

Pure Exploration Lower Bound Algorithm

Conclusion

Pure Exploration

Usual Queries

- Best Arm Identification
- Thresholding Bandit

Our setting

- Bandit parametrized by means $\mu \in \mathcal{M} \subset \mathbb{R}^{K}$.
- Answers \mathcal{I} . Correct answer function $i^* : \mathcal{M} \to \mathcal{I}$.
- Fixed confidence $\delta \in [0, 1]$.
- Algorithm stops at time τ_{δ} , returns $\hat{\imath}$.

Goal: δ -correct algorithm, such that

 $orall oldsymbol{\mu} \in \mathcal{M} \quad \mathbb{P}_{oldsymbol{\mu}}(\hat{\imath}
eq i^*(oldsymbol{\mu})) \leq \delta \ , \qquad \mathbb{E}_{oldsymbol{\mu}} \, au_{\delta} \ ext{is minimal.}$

Degenne Koolen Ménard

Pure Exploration Lower Boun

Algorithm

Results

Conclusion

Pure Exploration

Pure Exploration

> Game Degenne Koolen Ménard

This talk: about sampling rules. Use GLRT stopping rule from Garivier and Kaufmann, 2016.

> Degenne Koolen Ménard

Pure Exploration Lower Bound Algorithm

Results

Conclusion

Sample complexity: what is "minimal"?

Lower Bound Any δ -correct algorithm on \mathcal{M} must verify for all $\mu \in \mathcal{M}$,

$$\mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta}] \max_{\boldsymbol{w} \in \bigtriangleup_{K}} \inf_{\boldsymbol{\lambda} \in \neg i^{*}(\boldsymbol{\mu})} \sum_{k=1}^{K} w^{k} d(\mu^{k}, \lambda^{k}) \geq \mathsf{kl}(\delta, 1-\delta)$$

 $\neg i = \{ \boldsymbol{\lambda} \in \mathcal{M} : i^*(\boldsymbol{\lambda}) \neq i \}.$

> Degenne Koolen Ménard

Pure Exploration Lower Bound

Algorithm

Conclusio

Sample complexity: what is "minimal"?

Lower Bound Any δ -correct algorithm on \mathcal{M} must verify for all $\mu \in \mathcal{M}$,

$$\mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta}] \max_{\boldsymbol{w} \in \bigtriangleup_{K}} \inf_{\boldsymbol{\lambda} \in \neg i^{*}(\boldsymbol{\mu})} \sum_{k=1}^{K} w^{k} d(\mu^{k},\lambda^{k}) \geq \log \frac{1}{\delta}$$

 $\neg i = \{ \boldsymbol{\lambda} \in \mathcal{M} : i^*(\boldsymbol{\lambda}) \neq i \}.$

> Degenne Koolen Ménard

Pure Exploration Lower Bound Algorithm Results Conclusion

Follow the lower bound: attempt 1 Track and Stop

Compute estimated problem $\hat{\mu}_t$.

Compute the solution $oldsymbol{w}_t^*$ to

$$\operatorname*{argmax}_{w \in \triangle_{K}} \inf_{\boldsymbol{\lambda} \in \neg i^{*}(\hat{\boldsymbol{\mu}}_{t})} \sum_{k=1}^{K} w^{k} d(\hat{\mu}_{t}^{k}, \lambda^{k}) \,.$$

If an arm is sampled less than \sqrt{t} , sample it (forced exploration).

Otherwise, sample arm $k_t = \operatorname{argmin} N_{t-1}^k - (w_t^*)^k$ (tracking).

[Garivier and Kaufmann, Optimal Best Arm Identification with Fixed Confidence, 2016]

Degenne Koolen Ménard

- Exploration Lower Bour Algorithm
- Results
- Conclusion

Track-and-Stop

• Asymptotically optimal,

0

D- C

D-D

M- C

M-D

• But sometimes only asymptotically.

T- C

T-D

0- C

0- D

RR

opt

> Degenne Koolen Ménard

Pure Exploration Lower Bound Algorithm Follow the lower bound: attempt 2 with games!

A Game

Suppose μ , $i = i^*(\mu)$ known.

- k-Player plays in $\{1, \ldots, K\}$.
- λ -Player plays in $\neg i$.
- zero-sum. reward for k-player: $d(\mu^k, \lambda^k)$.

After t iterations: reward $\sum_{s=1}^{t} d(\mu^{k_s}, \lambda_s^{k_s})$.

Algorithms

- Regret-minimizing algorithm for k: AdaHedge.
- Regret-minimizing algorithm for λ : Best-Response.
- Result: value $\frac{1}{t} \sum_{s=1}^{t} d(\mu^{k_s}, \lambda_s^{k_s})$ converges to max-min.

> Degenne Koolen Ménard

Pure Exploration Lower Bound Algorithm Results

Conclusion

Follow the lower bound: attempt 2 with games!

A Game

Suppose μ , $i = i^*(\mu)$ known.

- k-Player plays in $\{1, \ldots, K\}$.
- λ -Player plays in $\neg i$.
- zero-sum. reward for k-player: $d(\mu^k, \lambda^k)$.

After *t* iterations: reward $\sum_{s=1}^{t} d(\mu^{k_s}, \lambda_s^{k_s})$.

Algorithms

- Regret-minimizing algorithm for k: AdaHedge.
- Regret-minimizing algorithm for λ : Best-Response.
- Result: value $\frac{1}{t} \sum_{s=1}^{t} \sum_{k=1}^{K} w_s^k d(\mu^k, \lambda_s^k)$ converges to max-min.

Degenne Koolen Ménard

Pure Exploration Lower Bound Algorithm Results

Conclusion

Algorithm for Pure Exploration

At stage $t \in \mathbb{N}$,

- Compute $\hat{\mu}_t$, define candidate answer i_t .
- Define game with optimistic reward $\max_{\xi \in [\hat{\mu}_{t}^{k} \pm ...]} d(\xi, \lambda^{k})$.
- Do 1 iteration of each learner on optimistic game.
- Sample the arm prescribed by the k-player (tracking).

And stop according to GLRT stopping rule.

> Degenne Koolen Ménard

Exploratio Lower Bou Algorithm

Results

Conclusion

Computational Complexity

Track-and-Stop: solves one "max-min" at each stage.

$$\underset{w \in \triangle_{K}}{\operatorname{argmax}} \inf_{\lambda \in \neg i^{*}(\hat{\mu}_{t})} \sum_{k=1}^{K} w^{k} d(\hat{\mu}_{t}^{k}, \lambda^{k}).$$

AdaHedge + Best-response: solves one "min" at each stage.

$$\underset{\lambda \in \neg i_t}{\operatorname{argmin}} \sum_{k=1}^{K} w_t^k d(\hat{\mu}_t^k, \lambda^k) \, .$$

Examples

- Threshlolding: closed form vs closed form.
- BAI: (line search)² vs line-search.
- Many Problems (sparse, lipschitz, unimodal): complicated? vs convex.

Degenne Koolen Ménard

Exploration Lower Bou Algorithm

Results

Conclusion

Results

Remarks

Pure Exploration Game

Degenne Koolen Ménard

Pure Exploration Lower Bound Algorithm Results

Conclusion

Variants

- Solve max-max-min at each stage ⇒ lowest sample complexity.
- Use a learner for $\lambda \Rightarrow$ no tracking needed:
 - Follow the perturbed leader: always available but t samples at stage t,
 - Easy if union of few simple convex regions.

Open problem

What if only few samples are available? What if we want $\delta=1/4?$

Conclusion

Game Degenne Koolen Ménard

Pure Exploration

Pure Exploration Lower Bound Algorithm

Conclusion

- Pure Exploration is a very broad setting.
- The game point of view is successful.
- Many other applications possible in bandits.
- The small confidence regime is still unclear.

Conclusion

Game Degenne Koolen Ménard

Pure Exploration

Pure Exploration Lower Bound Algorithm

- Results
- Conclusion

- Pure Exploration is a very broad setting.
- The game point of view is successful.
- Many other applications possible in bandits.
- The small confidence regime is still unclear.

Thank you!