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From bandit to RL

Solve a multi-armed bandit problem
= maximize rewards in a MDP with one state

The bandit world
▶ several principles for

exploration/exploitation

▶ efficient algorithms
(UCB, Thompson Sampling)

▶ with regret guarantees

RL algorithms so far

▶ ϵ-greedy exploration

▶ algorithms with (sometimes)
convergence guarantees that
are not very efficient

vs. (more) efficient algorithms
with little theoretical
understanding

Question : can we be inspired by bandit algorithms to

▶ propose new RL algorithms

▶ ... with theoretical guarantees ?
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A more general bandit problem

In each time step t :

▶ a context xt ∈ X is observed
(e.g. the history of user t, characteristics of the movies)

▶ an arm at ∈ At is chosen by the algorithm
(e.g. a movie in the catalog which is currently available)

▶ a reward rt = f (xt , at) + εt is observed

Observations :

➜ the mean rewards depends on the chosen arm AND on the context

➜ the context plays the role of a state
(however the next state does not necessarily depend on our actions)
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A more general bandit problem

user t : characteristic vector ut ∈ Rp

movie a : characteristic vector xa ∈ Rp′

➜ build a user-movie feature vector xa,t ∈ Rd

In each time step :

▶ the agent chooses an “arm” xt ∈ Xt = {(xa,t)a∈At} ⊆ Rd

▶ and gets a reward rt = f (xt) + εt

where f : Rd → R is a regression function and E[εt |Ft−1] = 0.
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Contextual linear bandits

In each round t, the agent

▶ receives a (finite) set of arms Xt ⊆ Rd

▶ chooses an arm xt ∈ Xt

▶ gets a reward rt = θ⊤⋆ xt + εt

where

• θ⋆ ∈ Rd is an unknown regression vector

• εt is a centered noise, independent from past data

Assumption : σ2- sub-Gaussian noise

∀λ ∈ R, E
[
eλX

]
≤ e

λ2σ2

2

e.g., Gaussian noise, bounded noise.
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Contextual linear bandits

In each round t, the agent

▶ receives a (finite) set of arms Xt ⊆ Rd

▶ chooses an arm xt ∈ Xt

▶ gets a reward rt = θ⊤⋆ xt + εt

where

• θ⋆ ∈ Rd is an unknown regression vector

• εt is a centered noise, independent from past data

(Pseudo)-regret for contextual bandit

maximizing expected total reward ↔ minimizing the expectation of

RT =
T∑
t=1

(
max
x∈Xt

θ⊤⋆ x − θ⊤⋆ xt

)

➜ in each round, comparison to a possibly different optimal action !
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Tools for solving linear bandits

Algorithms will rely on estimates / confidence regions / posterior
distributions for θ⋆ ∈ Rd .

▶ design matrix (with regularization parameter λ > 0)

Bλ
t = λId +

t∑
s=1

xsx
⊤
s

▶ regularized least-square estimate

θ̂λt =
(
Bλ
t

)−1

(
t∑

s=1

rtxt

)

▶ estimate of the expected reward of an arm x ∈ Rd : x⊤θ̂λt
➜ sufficient for Follow the Leader, but not for smarter algorithms !
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A Bayesian view on Linear Regression

Bayesian model :

▶ likelihood : rt = θ⊤⋆ xt + εt

▶ prior : θ⋆ ∼ N (0, κ2Id)

Assuming further that the noise is Gaussian : εt ∼ N (0, σ2), the
posterior distribution of θ⋆ has a closed form :

θ⋆|x1, r1, . . . , xt , rt ∼ N
(
θ̂λt , σ

2
(
Bλ
t

)−1
)

with

• Bλ
t = λId +

∑t
s=1 xsx

⊤
s

• θ̂λt =
(
Bλ
t

)−1 (∑t
s=1 rsxs

)
is the regularized least square estimate

with a regularization parameter λ = σ2

κ2 .

Rémy Degenne | Inria, CRIStAL - 8



Thompson Sampling for Linear Bandits

Recall the Thompson Sampling principle :

“draw a possible model from the posterior distribution and act
optimally in this sampled model”

Thompson Sampling in linear bandits

In each round t + 1,

θ̃t ∼ N
(
θ̂λt , σ

2
(
Bλ
t

)−1
)

xt+1 = argmax
x∈Xt+1

x⊤θ̃t

Numerical complexity : one needs to draw a sample from a multivariate
Gaussian distribution, e.g.

θ̃t = θ̂λt + σ
(
Bλ
t

)−1/2
X

where X is a vector with d independent N (0, 1) entries.
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Thompson Sampling for Linear Bandits

Recall the Thompson Sampling principle :

“draw a possible model from the posterior distribution and act
optimally in this sampled model”

Thompson Sampling in linear bandits

In each round t + 1,

θ̃t ∼ N
(
θ̂λt , σ

2
(
Bλ
t

)−1
)

xt+1 = argmax
x∈Xt+1

x⊤θ̃t

Regret guarantees : [Agrawal and Goyal, 2013] prove that (a variant of)
Thompson Sampling attains sub-linear regret :

RT (TS) = O
(
d3/2
√
T
)

with high probability
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Regret minimization

For simplicity, we will define regret for episodic MDPs, in which

V π(s) = V π
1 (s) = Eπ

[
H∑

h=1

r(st , at)

∣∣∣∣∣ s1 = s

]
.

For each episode t ∈ {1, . . . ,T}, an episodic RL algorithm

▶ starts in some initial state st1 ∼ ρ
▶ selects a policy πt (based on observations from past episodes)
▶ uses this policy to generate an episode of length H :

st1, a
t
1, r

t
1 , s

t
2, . . . , s

t
H , a

t
H , r

t
H

where ath = πt
h(s

t
h) and (r th , s

t
h+1) = step(sth, a

t
h)

Definition

The (pseudo)-regret of an episodic RL algorithm π = (πt)t∈N in T
episodes is

RT (π) =
T∑
t=1

[
V ⋆(st1)− V πt

(st1)
]
.
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For simplicity, we will define regret for episodic MDPs, in which

V π(s) = V π
1 (s) = Eπ

[
H∑

h=1

r(st , at)

∣∣∣∣∣ s1 = s

]
.

For each episode t ∈ {1, . . . ,T}, an episodic RL algorithm

▶ starts in some initial state st1 ∼ ρ
▶ selects a policy πt (based on observations from past episodes)
▶ uses this policy to generate an episode of length H :

st1, a
t
1, r

t
1 , s

t
2, . . . , s

t
H , a

t
H , r

t
H

where ath = πt
h(s

t
h) and (r th , s

t
h+1) = step(sth, a

t
h)

Definition

The (pseudo)-regret of an episodic RL algorithm π = (πt)t∈N in T
episodes is

RT (π) =
T∑
t=1

[
max
a

r(s1, a)− r(s1, a
t
1)
]

H = 1, single state s1.
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Reminder : Minimizing regret in bandits

Small regret requires to introduce the right amount of exploration, which
can be done with

▶ ϵ-greedy

explore uniformly with probability ϵ, otherwise trust the estimated model

▶ Upper Confidence Bounds algorithms

act as if the optimistic model were the true model

▶ Thompson Sampling

act as if a model sampled from the posterior distribution were the true model
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What is wrong with ε-greedy in RL ?

Example : Q-Learning with ε-greedy

➜ ε-greedy exploration

at =

{
argmaxa∈A Q̂t(st , a) with probability 1− εt

∼ U(A) with probability ϵt

➜ Q-Learning update

Q̂t(st , at) = Q̂t−1(st , at) + αt

(
rt + γmax

b
Q̂t−1(st , b)− Q̂t−1(st , at)

)

� Q̂t(s, a) is not an unbiased estimate of Q⋆(s, a)...
(except in the bandit case)
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What is wrong with ε-greedy ?

The RiverSwim MDP :

� ε can be hard to tune...
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What is wrong with ε-greedy ?

ϵt = 0.5 ϵt =
ϵ0

(N(st)− 1000)2/3 ϵt =

{
1 if t < 7000
ϵ0√
N(st )

otherwise

credit : Alessandro Lazaric

� ε-greedy performs undirected exploration

▶ alternative : model-based methods in which exploration is targeted
towards uncertain regions of the state/action space
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Towards an optimistic learning algorithm

▶ Reminder : Optimistic Bandit model

set of possible bandit models µ = (µ1, µ2, µ3, µ4) :

Mt = I1(t)× I2(t)× I3(t)× I4(t)

An optimistic bandit model is

µ+
t ∈ argmax

µ∈Mt

µ⋆

➜ the best arm in µ+
t is At = argmax

a∈A
UCBa(t)

(arm selected by UCB)
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Towards an optimistic learning algorithm

▶ Extension : Optimistic Markov Decision Process

set of possible MDPs M = ⟨S,A, r , p⟩ :

Mt = {⟨S,A, r , p⟩ : r , p ∈ Brt × B
p
t }

An optimistic Markov Decision Process is

M+
t ∈ argmax

M∈Mt

V ⋆
M(s1)

➜ an optimal policy in M+
t is such that

π+
t ∈ argmax

π
max

M∈Mt

V π
M(s1)

Challenges
1 How to construct the setMt of possible MDPs ?

2 How to numerically compute π+
t ?
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Step 1 : Constructing Mt

Mt =
{
⟨S,A, r , p⟩ : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}
Idea : build individual confidence regions

▶ on the average reward r(s, a) : Brt (s, a) ⊆ R
▶ on the transition probability vector p(·|s, a) : Bpt (s, a) ⊆ ∆(S)

that rely on the empirical estimates

r̂t(s, a) =
1

nt(s, a)

nt(s,a)∑
i=1

r [i ] and p̂t(s
′|s, a) = nt(s, a, s

′)

nt(s, a)

nt(s, a) : number of visits of (s, a) until episode t

nt(s, a, s
′) : number of times s ′ was the next state when the transition (s, a)

was performed until episode t

Goal : PM (M ∈Mt) is close to 1
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Step 1 : Constructing Mt

Mt =
{
⟨S,A, r , p⟩ : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}
Idea : build individual confidence regions

▶ on the average reward r(s, a) : Brt (s, a) ⊆ R

Assuming bounded rewards,

Brt (s, a) =

[
r̂t(s, a)−

√
ln(4(nt(s, a))2/δ)

2nt(s, a)
; r̂t(s, a)+

√
ln(4(nt(s, a))2/δ)

2nt(s, a)

]

satisfies
P
(
∃t ∈ N : r(s, a) /∈ Brt (s, a)

)
≤ δ.

(Hoeffding inequality + union bound)
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Step 1 : Constructing Mt

Mt =
{
⟨S,A, r , p⟩ : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}
Idea : build individual confidence regions

▶ on the transition probability vector p(·|s, a) : Bpt (s, a) ⊆ ∆(S)

Bpt (s, a) =

{
p(·|s, a) ∈ ∆(S) : ∥p(·|s, a)− p̂t(·|s, a)∥1 ≤ C

√
S ln(nt(s, a)/δ)

nt(s, a)

}
satisfies

P
(
∃t ∈ N : p(·|s, a) /∈ Bpt (s, a)

)
≤ δ.

(Freedman inequality + union bound)
[Auer et al., 2008]
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Step 1 : Constructing Mt

Mt =
{
⟨S,A, r , p⟩ : ∀(s, a) ∈ S ×A, r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a)

}

Brt (s, a) =
[
r̂t(s, a)− βr

t (s, a); r̂t(s, a) + βr
t (s, a)

]
Bpt (s, a) =

{
p(·|s, a) ∈ ∆(S) : ∥p(·|s, a)− p̂t(·|s, a)∥1 ≤ βp

t (s, a)
}

with exploration bonuses :

βr
t (s, a) ∝

√
ln(nt(s, a)/δ)

nt(s, a)

βp
t (s, a) ∝

√
S ln(nt(s, a)/δ)

nt(s, a)
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Step 2 : Optimistic Value Iteration

Goal : Approximate π+ ∈ argmax
π

max
M∈M

V π
M for a set of MDPs

M =
{
⟨S,A, r , p⟩ : ∀(s, a) ∈ S×A, r(s, a) ∈ Br (s, a), p(·|s, a) ∈ Bp(s, a)

}

Recall the optimal solution for a fixed MDP : π⋆
h = greedy(Q⋆

h ) where

Q⋆
h (s, a) = r(s, a) +

∑
s′

p(s ′|s, a)max
b

Q⋆
h+1(s

′, b)

➜ π+
h = greedy(Q+

h ) where

Q+
h (s, a) = max

(r ,p)∈M

[
r(s, a) +

∑
s′

p(s ′|s, a)max
b

Q+
h+1(s

′, b)

]
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Step 2 : Optimistic Value Iteration

Q+
h (s, a) = max

(r ,p)∈Br (s,a)×Bp(s,a)

[
r(s, a) + p(·|s, a)⊤

(
max
b

Q+
h+1(s

′, b)

)
s′∈S︸ ︷︷ ︸

V+
h+1

]

= max
r∈Br (s,a)

r + max
p∈Bp(s,a)

p⊤V+
h+1

= r̂t(s, a) + βr
t (s, a) + max

p∈Bp(s,a)
p⊤V+

h+1

= r̂t(s, a) + βr
t (s, a) + p̂t(·|s, a)⊤V+

h+1 + max
p∈Bp(s,a)

(p − p̂t(·|s, a))⊤V+
h+1

≤ r̂t(s, a) + βr
t (s, a) + p̂t(·|s, a)⊤V+

h+1 + max
p∈Bp(s,a)

∥p − p̂t(·|s, a)∥1∥V+
h+1∥∞

= r̂t(s, a) + βr
t (s, a) + p̂t(·|s, a)⊤V+

h+1 + βp
t (s, a)(H − h)rmax

= r̂t(s, a) + [βr
t (s, a) + βp

t (s, a)(H − h)rmax]︸ ︷︷ ︸
exploration bonus

+p̂t(·|s, a)⊤V+
h+1
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Optimistic algorithm

A family of algorithms

An optimistic algorithm uses in episode t + 1 the exporation policy
πt+1
h = greedy

(
Qh

)
where Qh(s, a) is an optimistic Q-value function

Qh(s, a) = r̂t(s, a) + βt(s, a) +
∑
s′∈S

p̂t(s
′|s, a)max

b
Qh+1(s

′, b)

where βt(s, a) is some exploration bonus.

From the previous calculation, one can propose

βt(s, a) = βr
t (s, a) + Cβp

t (s, a) ≃

√
ln(nt(s, a))

nt(s, a)
+ C

√
S ln(nt(s, a))

nt(s, a)

➜ βt(s, a) scales in 1/
√
nt(s, a) where nt(s, a) is the number of

previous visits to (s, a).
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Optimistic algorithm

A family of algorithms

An optimistic algorithm uses in episode t + 1 the exporation policy
πt+1
h = greedy

(
Qh

)
where Qh(s, a) is an optimistic Q-value function

Qh(s, a) = r̂t(s, a) + βt(s, a) +
∑
s′∈S

p̂t(s
′|s, a)max

b
Qh+1(s

′, b)

where βt(s, a) is some exploration bonus.

▶ An example of optimistic algorithm in the episodic setting :
UCB-VI [Azar et al., 2017]

▶ Optimistic algorithms were first proposed in the more complex
average-reward MDPs : UCRL [Auer et al., 2008]

Regret

UCB-VI achieves RT = O(
√
H2SAT ) w.h.p.
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Posterior Sampling for RL

Bayesian assumption : M is drawn from some prior distribution ν0.

νt ∈ ∆(M) : posterior distribution over the set of MDPs

Optimism Posterior Sampling
Set of possible MDPs Posterior distribution over MDPs

Compute the optimistic MDP Sample from the posterior distribution

Rémy Degenne | Inria, CRIStAL - 27



Posterior Sampling for Episodic RL

Algorithm 1: PSRL

Input : Prior distribution ν0
1 for t = 1, 2, . . . do
2 s1 ∼ ρ \\ get the starting state of episode t

3 Sample M̃t ∼ νt−1 \\ sample an MDP from the current posterior distribution

4 Compute π̃t an optimal policy for M̃t

5 for h = 1, . . . ,H do
6 ah = π̃t

h(sh) \\ choose next action according to π̃t

7 rh, sh+1 = step(sh, ah)

8 end

9 Compute νt based on νt−1 and {(sh, ah, rh, sh+1)}Hh=1

10 end

[Strens, 2000, Osband et al., 2013]
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Limitations of optimistic approaches

An important message from optimistic approaches :

➜ Do not only trust the estimated MDP M̂t , but take into account the
uncertainty in the underlying estimate

Brt (s, a) =
[
r̂t(s, a)− βr

t (s, a); r̂t(s, a) + βr
t (s, a)

]
Bpt (s, a) =

{
p(·|s, a) ∈ ∆(S) : ∥p(·|s, a)− p̂t(·|s, a)∥ 1 ≤ βp

t (s, a)
}

expressed by exploration bonuses scaling in
√

1
nt(s,a)

where nt(s, a) is the

count (=number of visits) of (s, a).

Scaling for large state action spaces ?

▶ each state action pair may be visited only very little...

▶ UCB-VI is quite inefficient in practice for large state-spaces
(efficient, continuous variants is an active research direction)
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A heuristic : count-based exploration

General principle
1 Estimate a “proxi” for the number of visits of a state ñt(s)

2 Add an exploration bonus directly to the collected rewards :

r+t = rt + c

√
1

ñt(st)

3 Run any DeepRL algorithm on

D =
⋃
t

{
(st , at , r

+
t , st+1)

}

Example of pseudo-counts :

▶ use a hash function, e.g. ϕ : S → {−1, 1}k
n(ϕ(st))← n(ϕ(st)) + 1
(possibly learn a good hash function)

[Tang et al., 2017]
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Limitations of Posterior Sampling

An important message from posterior sampling :

➜ Adding some noise to the estimated MDP M̂t is helpful !

r̃t(s, a) = r̂t(s, a) + ϵt(s, a)

p̃t(s
′|s, a) = p̂t(·|s, a) + ϵ′t(s, a).

Scaling for large state action spaces ?

▶ maintaining independent posterior over all state action rewards and
transitions can be costly

▶ more sophisticated prior distributions encoding some structure and
the associated posteriors can be hard to sample from

➜ use other type of (non-Bayesian) randomized exploration ?
Noisy Networks [Fortunato et al., 2017]
Bootstrap DQN [Osband et al., 2016] ...
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Outline

1 Preliminary : Contextual Bandits

2 Regret minimization in Reinforcement Learning

3 Bandit tools for Regret Minimization in RL
Optimism for Reinforcement Learning
Thompson Sampling for Reinforcement Learning
Scalable heuristics inspired by those principles

4 Bandits and Monte-Carlo Tree Search
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Monte-Carlo Tree Search

MCTS is a family of methods that use possibly random exploration to
explore the tree of possible next states.

Figure – An generic MCTS algorithm illustrated for a game
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The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvári, 2006]

UCT in a Game Tree

In a MAX node s (= root player move), select an action

argmax
a∈C(s)

S(s, a)

N(s, a)
+ c

√
ln (
∑

b N(s, b))

N(s, a)

N(s, a) : number of visits of (s, a)

S(s, a) : number of visits of (s, a) ending with the root player winning

8/11

2/6 2/3 4/2

N=19 visits

n3=6 visits
UCB3 = 4/6 + c√log(N)/n3
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a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvári, 2006]

UCT in a Game Tree

In a MIN node s (= adversary move), select an action

argmin
a∈C(s)

S(s, a)

N(s, a)
− c

√
ln (
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The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvári, 2006]

UCT in a Game Tree

In a MAX node s (= root player move), select an action

argmax
a∈C(s)

S(s, a)

N(s, a)
+ c

√
ln (
∑

b N(s, b))

N(s, a)

N(s, a) : number of visits of (s, a)

S(s, a) : number of visits of (s, a) ending with the root player winning

When a leaf (or some maximal depth) is reached :

▶ a playout is performed (play the game until the end with a simple heuristic,

or produce a random evaluation of the leaf position)

▶ the outcome of the playout (typically 1/0) is stored in all the nodes
visited in the previous trajectory
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The UCT algorithm

▶ first good AIs for Go where based on variants on UCT

▶ it remains a heuristic (no sample complexity guarantees, parameter c
fined-tuned for each application)

▶ many variants have been proposed

[Browne et al., 2012]
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
̸= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Selection step : in some state s, choose the next action to be

argmax
a∈C(s)

[
S(s, a)

N(s, a)
+ c × P(s, a)

√
N(s)

1 + N(s, a)

]
for some (fine-tuned) constant c .
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
̸= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Expansion step : once a leaf sL is reached, compute (p, v) = fθ(sL).

▶ Set v to be the value of the leaf

▶ For all possible next actions b :

➜ initialize the count N(sL, b) = 0
➜ initialize the prior probability P(sL, b) = pb (possibly add some noise)
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
̸= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Back-up step : for all ancestor st , at in the trajectory that end in leaf sL,

N(st , at) ← N(st , at) + 1

S(st , at) ← S(st , at) + v
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
̸= pure play-out based MCTS

Input

A neural network predicting a policy p ∈ ∆(A) and a value v ∈ R from
the current state s : (p, v) = fθ(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s, a),P(s, a)}

Output of the planning algorithm ? select an action a at random
according to

π(a) =
N(s0, a)

1/τ∑
b N(s0, b)1/τ

for some (fine-tuned) temperature τ .
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Training the neural network

▶ In AlphaGo, fθ was trained on a database of games played by human

▶ In AlphaZero, the network is trained using only self-play

[Silver et al., 2016, Silver et al., 2017]

Let θ be the current parameter of the network (p, v) = fθ(sL).

1 generate N games where each player uses MCTS(θ) to select the
next action at (and output a probability over actions πt)

D =

Nb games⋃
i=1

{
(st , πt ,±rTi )

}Ti

i=1

Ti : length of game i , rTi ∈ {−1, 0, 1} outcome of game i for one player

2 Based on a sub-sample of D, train the neural network using
stochastic gradient descent on the loss function

L(s,π, z ;p, v) = (z − v)2 − π⊤ ln(p) + c∥θ∥2
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A nice actor-critic architecture

AlphaZero alternates between

▶ The actor : MCTS(θ)
generates trajectories guided by the network fθ but still exploring

➜ act as a policy improvement
(N = 25000 games played, each call to MCTS uses 1600 simulations)

▶ The critic : neural network fθ
updates θ based on trajectories followed by the critic

➜ evaluate the actor’s policy

Rémy Degenne | Inria, CRIStAL - 39



Summary

Bandit tools can be useful in more realistic, contextual models

Bandits tools are useful for Reinforcement Learning :

▶ UCRL, PSRL : bandit-based exploration for tabular MDPs

▶ ... that can motivate “deeper” heuristics

Bandit tools lead to big success in Monte-Carlo planning

▶ ... without proper sample complexity guarantees

➜ Unifying theory and practice is a big challenge in RL !

Perspective : bandit tools are also useful beyond RL (i.e. with no
rewards to maximize) : best arm identification, black box optimization...

Rémy Degenne | Inria, CRIStAL - 40



Agrawal, S. and Goyal, N. (2013).

Thompson sampling for contextual bandits with linear payoffs.

In International conference on machine learning, pages 127–135. PMLR.

Auer, P., Jaksch, T., and Ortner, R. (2008).

Near-optimal regret bounds for reinforcement learning.

Advances in neural information processing systems, 21.

Azar, M. G., Osband, I., and Munos, R. (2017).

Minimax regret bounds for reinforcement learning.

In International Conference on Machine Learning, pages 263–272. PMLR.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I.,
Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012).

A survey of monte carlo tree search methods.

IEEE Transactions on Computational Intelligence and AI in games, 4(1) :1–43.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., Mnih,
V., Munos, R., Hassabis, D., Pietquin, O., et al. (2017).

Noisy networks for exploration.

arXiv preprint arXiv :1706.10295.



Kocsis, L. and Szepesvári, C. (2006).
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