Lecture 9 : Bandit tools for Reinforcement Learning

Rémy Degenne
(remy.degenne@inria.fr)

e M=
CArs C
. I— .

Centrale Lille, 2025/2026



From bandit to RL

Solve a multi-armed bandit problem
= maximize rewards in a MDP with one state

RL algorithms so far
The bandit world

» e-greedy exploration

» several principles for
exploration /exploitation

» algorithms with (sometimes)
convergence guarantees that
> efficient algorithms are not very efficient

(UCB, Thompson Sampling) vs. (more) efficient algorithms

> with regret guarantees with little theoretical
understanding

Question : can we be inspired by bandit algorithms to
» propose new RL algorithms

» ... with theoretical guarantees?
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Outline

Preliminary : Contextual Bandits
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A more general bandit problem

In each time step t :

» a context x; € X is observed
(e.g. the history of user t, characteristics of the movies)

» an arm a; € A; is chosen by the algorithm
(e.g. a movie in the catalog which is currently available)

> areward r; = f(x¢, a;) + ; is observed

Observations :
=?» the mean rewards depends on the chosen arm AND on the context

=¥ the context plays the role of a state
(however the next state does not necessarily depend on our actions)
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A more general bandit problem

user t : characteristic vector u; € RP
. . . /
movie a : characteristic vector x, € RP

=» build a user-movie feature vector x, ; € R4

In each time step :
» the agent chooses an “arm” x; € X; = {(Xa.t)aca,} € RY
> and gets a reward r, = (x;) + &;

where f : RY — R is a regression function and E[e;|F;_1] = 0.
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Contextual linear bandits

In each round t, the agent
> receives a (finite) set of arms X; C R?
» chooses an arm x; € X;
> gets a reward r; = HIX;_» + &4
where
e 0, € RY is an unknown regression vector

e &, is a centered noise, independent from past data

Assumption : 0%~ sub-Gaussian noise
VAER, E[eM] <e 7

e.g., Gaussian noise, bounded noise.
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Contextual linear bandits

In each round t, the agent
> receives a (finite) set of arms &, C R9
» chooses an arm x; € X}
> getsareward r; = 0] x; +¢;
where
e 0, € R? is an unknown regression vector
e ¢; is a centered noise, independent from past data

(Pseudo)-regret for contextual bandit

maximizing expected total reward <> minimizing the expectation of

’
Rr=)Y_ (51635 0] x — ejxt)

t=1

=¥ in each round, comparison to a possibly different optimal action !
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Tools for solving linear bandits

Algorithms will rely on estimates / confidence regions / posterior
distributions for 0, € RY.

> design matrix (with regularization parameter A > 0)

t
B} =g+ xx,
s=1

> regularized least-square estimate

49?\ = B/\ (Z rtXt>

» estimate of the expected reward of an arm x € RY : x ()

=» sufficient for Follow the Leader, but not for smarter algorithms!
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A Bayesian view on Linear Regression

Bayesian model :
> likelihood : r; = 0] x; + &;
» prior : 0, ~ N(0,k%ly)

Assuming further that the noise is Gaussian : ; ~ N(0,0?), the
posterior distribution of 6, has a closed form :

A —1
Oulxt, iy ey xe, it ~ N (92\,02 (B;\) )
with
B =Nt ]
- -1 : . .
o 0 = (B) " (3oi_; rsxs) is the regularized least square estimate
2

with a regularization parameter A\ = %,

2
R*
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Thompson Sampling for Linear Bandits

Recall the Thompson Sampling principle :

“"draw a possible model from the posterior distribution and act
optimally in this sampled model”

Thompson Sampling in linear bandits

In each round t + 1,
b ~ N(002(BY)7)

Xpp1 = argmax x 0,
x€Xt1

Numerical complexity : one needs to draw a sample from a multivariate
Gaussian distribution, e.g.

b= 0 +0(BY) 2 x

where X is a vector with d independent A/(0, 1) entries.
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Thompson Sampling for Linear Bandits

Recall the Thompson Sampling principle :

“"draw a possible model from the posterior distribution and act
optimally in this sampled model”

Thompson Sampling in linear bandits

In each round t + 1,
b ~ N (93,02 (B;\)_l)

Xey1 = argmax x 0,
x€EXti1

Regret guarantees : [Agrawal and Goyal, 2013] prove that (a variant of)
Thompson Sampling attains sub-linear regret :

R(TS) = O (d3/2ﬁ) with high probability
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Regret minimization in Reinforcement Learning
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Regret minimization

For simplicity, we will define regret for episodic MDPs, in which

51251.

For each episode t € {1,..., T}, an episodic RL algorithm
> starts in some initial state sf ~ p
> selects a policy 7" (based on observations from past episodes)
> uses this policy to generate an episode of length H :

H

Z r(se, at)

h=1

VT(s) = Vf(s) =E™

t t t .t t t t
Sl,al,rl,sz,...,SH,aH,rH

where a; = 7} (s;) and (rf, s ;) = step(sf, a},)

Definition

The (pseudo)-regret of an episodic RL algorithm 7 = (7%)¢ey in T
episodes is T .
Rr(m) =Y [V*(sf) = V™'(s5)] -

t=1




Regret minimization

For simplicity, we will define regret for episodic MDPs, in which

51251.

For each episode t € {1,..., T}, an episodic RL algorithm
> starts in some initial state sf ~ p
> selects a policy 7" (based on observations from past episodes)
> uses this policy to generate an episode of length H :

H

Z r(se, at)

h=1

VT(s) = Vf(s) =E™

t t t .t t t t
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episodes is T
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t=1




Regret minimization

For simplicity, we will define regret for episodic MDPs, in which

51251.

For each episode t € {1,..., T}, an episodic RL algorithm
> starts in some initial state sf ~ p
> selects a policy 7" (based on observations from past episodes)
> uses this policy to generate an episode of length H :

H

Z r(se, at)

h=1

VT(s) = Vf(s) =E™

t t t .t t t t
Sl,al,rl,sz,...,SH,aH,rH

where a; = 7} (s;) and (rf, s ;) = step(sf, a},)

Definition

The (pseudo)-regret of an episodic RL algorithm 7 = (7%)¢ey in T
episodes is T
Rr(n) = Z (" — pat]  H = 1,single state s;.

t=1




Reminder : Minimizing regret in bandits

Small regret requires to introduce the right amount of exploration, which
can be done with

> e-greedy

explore uniformly with probability €, otherwise trust the estimated model

» Upper Confidence Bounds algorithms

act as if the optimistic model were the true model

» Thompson Sampling

act as if a model sampled from the posterior distribution were the true model
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What is wrong with e-greedy in RL?

Example : Q-Learning with e-greedy

=» e-greedy exploration

o, = { ArgmMaxXae 4 Q:(s,a) with probability 1 — &,
£ ~U(A) with probability €;

=» Q-Learning update
Ot(sta at) = ét—l(sta at) + oy (rt + mgx Qt—l(st; b) - ét—l(sta 3t))

/\ Q:(s,a) is not an unbiased estimate of Q*(s, a)...
(except in the bandit case)
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What is wrong with e-greedy ?

The RiverSwim MDP :

/\ € can be hard to tune...
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What is wrong with e-greedy ?

€ — 0.5

ooooo

(N(st) — 1000

otherwise

B c 1 if t <7000
€t = — )2/3 €t = €g

A e-greedy performs undirected exploration

N(st)
credit : Alessandro Lazaric

» alternative : model-based methods in which exploration is targeted
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Outline

Bandit tools for Regret Minimization in RL
m Optimism for Reinforcement Learning
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Towards an optimistic learning algorithm

» Reminder : Optimistic Bandit model

set of possible bandit models p = (1, po, ps, pa) :

0

Mt = Il(t) X Ig(t) X Ig(t) X I4(t)

An optimistic bandit model is

pi € argmax p*
HEM;

=» the best arm in pf is A, = argmax UCB,(t)
acA
(arm selected by UCB)
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Towards an optimistic learning algorithm

» Reminder : Optimistic Bandit model

set of possible bandit models p = (1, po, ps, pa) :

0

Mt = Il(t) X Ig(t) X I3(t) X I4(t)

An optimistic bandit model is

/JJ?_ € argmax max [i,
HEM; 2

=» the best arm in pf is A, = argmax UCB,(t)
acA
(arm selected by UCB)
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Towards an optimistic learning algorithm

» Extension : Optimistic Markov Decision Process
set of possible MDPs M = (S, A, r,p) :
Mt = {<S,A,r,p) “hpe B; X Bf}

M;" € argmax Vjy,(s1)

An optimistic Markov Decision Process is
MeM; J

=» an optimal policy in M;" is such that

—+ s
m, € argmax max V(s
‘ max, max Vi (s1)

Challenges

© How to construct the set M; of possible MDPs?
© How to numerically compute 7, ?
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Towards an optimistic learning algorithm

» Extension : Optimistic Markov Decision Process
set of possible MDPs M = (S, A, r,p) :
Mt = {<S,A,r,p) “hpe B; X Bf}

M;" € argmax max V(s1)

An optimistic Markov Decision Process is
MeM; g J

=» an optimal policy in M;" is such that

—+ s
m, € argmax max V(s
‘ max, max Vi (s1)

Challenges

© How to construct the set M; of possible MDPs?
© How to numerically compute 7, ?
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Step 1 : Constructing M,

M = {(&A, r,p) :V(s,a) € S x A, r(s,a) € Bi(s,a),p(:|s,a) € Bf(s,a)}

Idea : build individual confidence regions
> on the average reward r(s,a) : Bi(s,a) CR
» on the transition probability vector p(-|s, a) : BY(s,a) C A(S)

that rely on the empirical estimates

ne(s,a)

1 § > il and (sl o) =

fi(s,a) = ——~ e ——
t( ’ ) nt(s7a il nt(sza)

ne(s, a) : number of visits of (s, a) until episode t
ne(s, a,s’) : number of times s’ was the next state when the transition (s, a)
was performed until episode t

Goal : Py (M € M,) is close to 1
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Step 1 : Constructing M,

Me={(S, A, 1,p) : V(s,a) € S x A, r(s,a) € Bi(5.3), p(-[s, a) € Bi(s,2) }

Idea : build individual confidence regions

> on the average reward r(s,a) : Bi(s,a) CR

Assuming bounded rewards,

Bi(s,a) = lft(s, 3)—\/|n(4(nt(s’a))2/5);Ft(57 a)+\/|n(4(nt(s, a))z/é)]

2n(s, a) 2n(s, a)
satisfies

P(Ht € N:r(s,a) ¢ Bi(s, a)) <4.

(Hoeffding inequality + union bound)
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Step 1 : Constructing M,

M = {(S,A, r,p):V(s,a) € S x A, r(s,a) € Bi(s,a),p(:|s,a) € Bf(s,a)}

Idea : build individual confidence regions

> on the average reward r(s,a) : Bi(s,a) CR

Assuming bounded rewards,

Bi(s,a) = [F,_b(s7 a) — (s, a); Fe(s,a) + Bl (s, a)]

satisfies
P(Ht eN: r(s,a) & B(s, a)) <4

(Hoeffding inequality + union bound)
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Step 1 : Constructing M,

M = {(S7 A, r,p):V(s,a) €S x A, r(s,a) € Bi(s,a),p(|s,a) € B (s, a)}
Idea : build individual confidence regions
» on the transition probability vector p(-|s, a) : BY(s,a) C A(S)

Sin(ne(s, a)/5) }

BP(s,a) = {p(.|s7a) € A(S) : [Ip(ls, a) = pe(vls; a)[l; < € ne(s, a)

satisfies
P(at e N: p(|s,a) & BE(s, a)> < 6.

(Freedman inequality + union bound)
[Auer et al., 2008]
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Step 1 : Constructing M,

M = {(S,A, r,p) :V(s,a) € S x A, r(s,a) € Bi(s,a),p(:|s,a) € Bf(s,a)}

Idea : build individual confidence regions
» on the transition probability vector p(-|s, a) : BY(s,a) C A(S)

BY(s.a) = {p(-|s,a) € AWS) : [Ip(ls. a) - pi(-ls. a)ll, < (s, a)}

satisfies
P(Ht e N:p(s,a) ¢ Bf(57a)> <.

(Freedman inequality + union bound)
[Auer et al., 2008]
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Step 1 : Constructing M,

Mo ={(S,A,1,p) : ¥(s,a) € S x A, r(s,a) € 5{(5.2), p(-[s, a) € Bi(s,2) }

Bi(s,a) = [Ft(s, a) — B{(s, a); fe(s,a) + BL(s, a)}
B(s.a) = {p(ls;a) € AS): llp(ls,a) — Ail:ls,a)l; < BE(s. )}

with exploration bonuses :

Bi(s,a) o %
BE(s,a) o w
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Step 2 : Optimistic Value lteration

Goal : Approximate 7" € argmax max V/, for a set of MDPs
PP & Mem M
s

M = {(S,A, r,p):V¥(s,a) € SxA,r(s,a) € B'(s,a),p(-|s,a) € B°(s, a)}

Recall the optimal solution for a fixed MDP : 7j; = greedy(Q}) where

Q;(S7 a) = r(s, 3) + ZP(S/|S, 3) mbaX Q;+1(5/7 b)

= 7} = greedy(Q;") where

Qp(s:a) = max |r(s,a)+ Z p(s'ls, a) max Q. (s', b)
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Step 2 : Optimistic Value lteration

*(s,a) = a s,a Js,a)" [ max Q. (s, b
Qh ( ) (nP)EB’@a?xBP(s,a) r( ) + P( | ) mbx Qh+1( ) s'eS
Vi
T\ /A

= V

rCrgiéa) T perg"a(éa) P h+1

- T
= A(s,a) +Bi(s,a)+ max p'Vy,

Pe(s,a) + Br(s,a) + pe(-]s,a) " V,:rl + pefgfé a)(P — pe(:ls,a)) " Vhttl

IA

N N T ~
Rls,0) 4 5i(5,0) & Bel1s.2) Vi + max o = AuCls. 2) Vil

Pi(s,a) + By (s,a) + pe(‘[s,a) T Vilyy + BE(s, @) (H — h)rmax
Pi(s,a) + [Bi(s, a) + BE(s, @) (H = h)rmax] +P: (|5, ) T Vi

exploration bonus
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Optimistic algorithm

A family of algorithms

An optimistic algorithm uses in episode t + 1 the exporation policy
’/T;;H = greedy (Qh) where Q(s, a) is an optimistic Q-value function

Qn(s,a) = #(s,a) + Bi(s,a) + Z pe(s'|s, a) m[;axahﬂ(s', b)
s'esS

where f3;(s, a) is some exploration bonus.

From the previous calculation, one can propose

In(n:(s, a)) Sin(n(s, a))
n(s, a) +c ne(s, a)

ﬁt(sv a) = B£(57 a) + Cﬁf(sa a) =

> Bi(s,a) scales in 1/1/n:(s, a) where n;(s, a) is the number of
previous visits to (s, a).
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Optimistic algorithm

A family of algorithms

An optimistic algorithm uses in episode t + 1 the exporation policy
7r,t,+1 = greedy (Qh) where Q(s, a) is an optimistic Q-value function

Qn(s,a) = f(s,a) + Bi(s,a) + Z pe(s'ls, a) mgxahH(S', b)

s'eS

where f3;(s, a) is some exploration bonus.

» An example of optimistic algorithm in the episodic setting :
UCB-VI [Azar et al., 2017]

» Optimistic algorithms were first proposed in the more complex
average-reward MDPs : UCRL [Auer et al., 2008]

UCB-VI achieves Rt = O(V H2SAT) w.h.p.

Rémy Degenne | Inria, CRIStAL



Outline

Bandit tools for Regret Minimization in RL

m Thompson Sampling for Reinforcement Learning

Rémy Degenne | Inria, CRIStAL

- 26



Posterior Sampling for RL

Bayesian assumption : M is drawn from some prior distribution vjg.

vy € A(M) :  posterior distribution over the set of MDPs

Optimism

Posterior Sampling

Set of possible MDPs

Posterior distribution over MDPs

Compute the optimistic MDP

Sample from the posterior distribution
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Posterior Sampling for Episodic RL

Algorithm 1: PSRL
Input : Prior distribution g

1 fort=12 ... do

2 Sp~p \\ get the starting state of episode t

3 Sample Mf ~ V¢—1 \\ sample an MDP from the current posterior distribution
4 Compute 7 an optimal policy for M,

5 forh=1,... Hdo

6 ap = 7?;(5;,) \\\ choose next action according to 7"

7 Ity Shy1 = Step(sp, ap)

8 end

9 Compute v; based on v;_1 and {(sp, an, rh.sh.l)}ﬁzl

10 end

[Strens, 2000, Osband et al., 2013]

Rémy Degenne | Inria, CRIStAL -28



Outline

Bandit tools for Regret Minimization in RL

m Scalable heuristics inspired by those principles
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Limitations of optimistic approaches

An important message from optimistic approaches :

=» Do not only trust the estimated MDP Mt, but take into account the
uncertainty in the underlying estimate

Bi(s,a) = [ft(s.a)—,3;(5.,a);ft(s,a)+ﬁ;(s,a)}

Bi(s,a) = {p(ls,2) € AWS) : Ip(1s,2) — pil 15 )1 < 52(s.2)}

expressed by exploration bonuses scaling in ,/ﬁ where n(s, a) is the
count (=number of visits) of (s, a).

Scaling for large state action spaces ?
> each state action pair may be visited only very little...

» UCB-VI is quite inefficient in practice for large state-spaces
(efficient, continuous variants is an active research direction)
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A heuristic : count-based exploration

General principle

@ Estimate a “proxi” for the number of visits of a state i;(s)

@ Add an exploration bonus directly to the collected rewards :

rt=n+c ()

© Run any DeepRL algorithm on

D= U {(St, ar, r, 5t+1)}
t
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A heuristic : count-based exploration

General principle

@ Estimate a “proxi” for the number of visits of a state i;(s)

@ Add an exploration bonus directly to the collected rewards :

rt=n+c ()

© Run any DeepRL algorithm on

D= U {(St, at, ., 5t+1)}
t

Example of pseudo-counts :
» use a hash function, e.g. ¢: S — {—1,1}k

n(@(st)) < n(o(st)) +1
(possibly learn a good hash function)
[Tang et al., 2017]
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Limitations of Posterior Sampling

An important message from posterior sampling :
=» Adding some noise to the estimated MDP M, is helpful !

Fe(s,a) = Fi(s,a) + es, a)

ﬁt(sl|57 a) = peltfs.a)+ 6;(57 a).

Scaling for large state action spaces ?

» maintaining independent posterior over all state action rewards and
transitions can be costly

» more sophisticated prior distributions encoding some structure and
the associated posteriors can be hard to sample from

=» use other type of (non-Bayesian) randomized exploration ?
Noisy Networks [Fortunato et al., 2017]
Bootstrap DQN [Osband et al., 2016]
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Outline

A Bandits and Monte-Carlo Tree Search
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Monte-Carlo Tree Search

MCTS is a family of methods that use possibly random exploration to
explore the tree of possible next states.

Selection Expansion Simulation Backpropagation

) )

- e

@O O O "
HEEL 0FL 0O
®© ®®

© ®

01

Figure — An generic MCTS algorithm illustrated for a game
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The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvari, 2006]
UCT in a Game Tree

In a MAX node s (= root player move), select an action
| N(s, b
argmax 5(57 a) +c n(Zb (57 ))
aeC(s) N(57 a) N(S, a)

N(s, a) : number of visits of (s, a)
S(s,a) : number of visits of (s, a) ending with the root player winning

N=19 visits

n3=6 visits
UCB; = 4/6 + cVIog(N)/n,
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The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvari, 2006]
UCT in a Game Tree

In a MIN node s (= adversary move), select an action

S(s, a) In(>>, N(s, b))

argmin c
st N(s,a) N(s.2)

N(s, a) : number of visits of (s, a)
S(s,a) : number of visits of (s, a) ending with the root player winning

N=19 visits

n3=6 visits
UCB; = 4/6 + cVIog(N)/n,
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The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvari, 2006]
UCT in a Game Tree

In a MAX node s (= root player move), select an action

Aremma S(s, a) c In (>, N(s, b))
aEC(s) N(Sva) - N(S’ a)

N(s, a) : number of visits of (s, a)
S(s, a) : number of visits of (s, a) ending with the root player winning

When a leaf (or some maximal depth) is reached :

» a playout is performed (play the game until the end with a simple heuristic,
or produce a random evaluation of the leaf position)

> the outcome of the playout (typically 1/0) is stored in all the nodes

visited in the previous trajectory
Rémy Degenne | Inria, CRIStAL
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The UCT algorithm

» first good Als for Go where based on variants on UCT

> it remains a heuristic (no sample complexity guarantees, parameter ¢
fined-tuned for each application)

» many variants have been proposed

[Browne et al., 2012]
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
# pure play-out based MCTS

A neural network predicting a policy p € A(A) and a value v € R from
the current state s : (p, v) = f(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s,a), P(s,a)}
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
# pure play-out based MCTS

A neural network predicting a policy p € A(A) and a value v € R from
the current state s : (p, v) = f(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s,a), P(s,a)}

Selection step : in some state s, choose the next action to be

argmax
aeC(s) N (5 ) a)

for some (fine-tuned) constant c.
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
# pure play-out based MCTS

A neural network predicting a policy p € A(A) and a value v € R from
the current state s : (p, v) = fy(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s,a),S(s,a), P(s,a)}

Expansion step : once a leaf s, is reached, compute (p, v) = fp(st).
» Set v to be the value of the leaf
» For all possible next actions b :
=» initialize the count N(s., b) =0
=» initialize the prior probability P(s;, b) = p, (possibly add some noise)
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Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network

# pure play-out based MCTS

A neural network predicting a policy p € A(A) and a value v € R from
the current state s : (p, v) = fy(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s,a), P(s,a)}
Back-up step : for all ancestor s;, a; in the trajectory that end in leaf s,

N(st,at) — N(St,at) +1
S(St, at) — .S(St7 at) + v

Rémy Degenne | Inria, CRIStAL



Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network

# pure play-out based MCTS

A neural network predicting a policy p € A(A) and a value v € R from
the current state s : (p, v) = fy(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s,a), P(s,a)}

Output of the planning algorithm ? select an action a at random
according to
N(so, a)"/"

26 N(so, b)1/7

for some (fine-tuned) temperature 7.

m(a) =
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Training the neural network

» In AlphaGo, fy was trained on a database of games played by human
» In AlphaZero, the network is trained using only self-play J

[Silver et al., 2016, Silver et al., 2017]

Let 6 be the current parameter of the network (p, v) = fy(s.).

@ generate N games where each player uses MCTS(6) to select the

next action a; (and output a probability over actions ;)
Nb games T

p= |J {(stmr-,ifﬂ) }

i=1
i=1
T; : length of game i, rr;, € {—1,0,1} outcome of game i for one player

@ Based on a sub-sample of D, train the neural network using
stochastic gradient descent on the loss function

L(s,7,z;p,v) = (z—v)> =7 " In(p) + c|||?
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A nice actor-critic architecture

AlphaZero alternates between

» The actor : MCTS(6)
generates trajectories guided by the network fy but still exploring

=¥ act as a policy improvement
(N = 25000 games played, each call to MCTS uses 1600 simulations)

» The critic : neural network fy

updates 6 based on trajectories followed by the critic

=¥ evaluate the actor’s policy
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Summary

Bandit tools can be useful in more realistic, contextual models

Bandits tools are useful for Reinforcement Learning :
» UCRL, PSRL : bandit-based exploration for tabular MDPs
» ... that can motivate “deeper” heuristics

Bandit tools lead to big success in Monte-Carlo planning

> ... without proper sample complexity guarantees

=» Unifying theory and practice is a big challenge in RL!

Perspective : bandit tools are also useful beyond RL (i.e. with no
rewards to maximize) : best arm identification, black box optimization...
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