Lecture 9 : Bandit tools for Reinforcement Learning

Rémy Degenne
(remy.degenne@inria.fr)

e M=
CArs C
. I— .

Centrale Lille, 2025/2026

From bandit to RL

Solve a multi-armed bandit problem
= maximize rewards in a MDP with one state

RL algorithms so far
The bandit world

» e-greedy exploration

» several principles for
exploration /exploitation

» algorithms with (sometimes)
convergence guarantees that
> efficient algorithms are not very efficient

(UCB, Thompson Sampling) vs. (more) efficient algorithms

> with regret guarantees with little theoretical
understanding

Question : can we be inspired by bandit algorithms to
» propose new RL algorithms

» ... with theoretical guarantees?

Rémy Degenne | Inria, CRIStAL

Outline

Preliminary : Contextual Bandits

Rémy Degenne | Inria, CRIStAL

A more general bandit problem

In each time step t :

» a context x; € X is observed
(e.g. the history of user t, characteristics of the movies)

» an arm a; € A; is chosen by the algorithm
(e.g. a movie in the catalog which is currently available)

> areward r; = f(x¢, a;) + ; is observed

Observations :
=?» the mean rewards depends on the chosen arm AND on the context

=¥ the context plays the role of a state
(however the next state does not necessarily depend on our actions)

Rémy Degenne | Inria, CRIStAL

A more general bandit problem

user t : characteristic vector u; € RP
. . . /
movie a : characteristic vector x, € RP

=» build a user-movie feature vector x, ; € R4

In each time step :
» the agent chooses an “arm” x; € X; = {(Xa.t)aca,} € RY
> and gets a reward r, = (x;) + &;

where f : RY — R is a regression function and E[e;|F;_1] = 0.

Rémy Degenne | Inria, CRIStAL

Contextual linear bandits

In each round t, the agent
> receives a (finite) set of arms X; C R?
» chooses an arm x; € X;
> gets a reward r; = HIX;_» + &4
where
e 0, € RY is an unknown regression vector

e &, is a centered noise, independent from past data

Assumption : 0%~ sub-Gaussian noise
VAER, E[eM] <e 7

e.g., Gaussian noise, bounded noise.

Rémy Degenne | Inria, CRIStAL

Contextual linear bandits

In each round t, the agent
> receives a (finite) set of arms &, C R9
» chooses an arm x; € X}
> getsareward r; = 0] x; +¢;
where
e 0, € R? is an unknown regression vector
e ¢; is a centered noise, independent from past data

(Pseudo)-regret for contextual bandit

maximizing expected total reward <> minimizing the expectation of

’
Rr=)Y_ (51635 0] x — ejxt)

t=1

=¥ in each round, comparison to a possibly different optimal action !

Rémy Degenne | Inria, CRIStAL

Tools for solving linear bandits

Algorithms will rely on estimates / confidence regions / posterior
distributions for 0, € RY.

> design matrix (with regularization parameter A > 0)

t
B} =g+ xx,
s=1

> regularized least-square estimate

49?\ = B/\ (Z rtXt>

» estimate of the expected reward of an arm x € RY : x ()

=» sufficient for Follow the Leader, but not for smarter algorithms!

Rémy Degenne | Inria, CRIStAL

A Bayesian view on Linear Regression

Bayesian model :
> likelihood : r; = 0] x; + &;
» prior : 0, ~ N(0,k%ly)

Assuming further that the noise is Gaussian : ; ~ N(0,0?), the
posterior distribution of 6, has a closed form :

A —1
Oulxt, iy ey xe, it ~ N (92\,02 (B;\))
with
B =Nt]
- -1 : . .
o 0 = (B) " (3oi_; rsxs) is the regularized least square estimate
2

with a regularization parameter A\ = %,

2
R*

Rémy Degenne | Inria, CRIStAL

Thompson Sampling for Linear Bandits

Recall the Thompson Sampling principle :

“"draw a possible model from the posterior distribution and act
optimally in this sampled model”

Thompson Sampling in linear bandits

In each round t + 1,
b ~ N(002(BY)7)

Xpp1 = argmax x 0,
x€Xt1

Numerical complexity : one needs to draw a sample from a multivariate
Gaussian distribution, e.g.

b= 0 +0(BY) 2 x

where X is a vector with d independent A/(0, 1) entries.

Rémy Degenne | Inria, CRIStAL

Thompson Sampling for Linear Bandits

Recall the Thompson Sampling principle :

“"draw a possible model from the posterior distribution and act
optimally in this sampled model”

Thompson Sampling in linear bandits

In each round t + 1,
b ~ N (93,02 (B;\)_l)

Xey1 = argmax x 0,
x€EXti1

Regret guarantees : [Agrawal and Goyal, 2013] prove that (a variant of)
Thompson Sampling attains sub-linear regret :

R(TS) = O (d3/2ﬁ) with high probability

Rémy Degenne | Inria, CRIStAL

Outline

Regret minimization in Reinforcement Learning

Rémy Degenne | Inria, CRIStAL

Regret minimization

For simplicity, we will define regret for episodic MDPs, in which

51251.

For each episode t € {1,..., T}, an episodic RL algorithm
> starts in some initial state sf ~ p
> selects a policy 7" (based on observations from past episodes)
> uses this policy to generate an episode of length H :

H

Z r(se, at)

h=1

VT(s) = Vf(s) =E™

t t t .t t t t
Sl,al,rl,sz,...,SH,aH,rH

where a; = 7} (s;) and (rf, s ;) = step(sf, a},)

Definition

The (pseudo)-regret of an episodic RL algorithm 7 = (7%)¢ey in T
episodes is T .
Rr(m) =Y [V*(sf) = V™'(s5)] -

t=1

Regret minimization

For simplicity, we will define regret for episodic MDPs, in which

51251.

For each episode t € {1,..., T}, an episodic RL algorithm
> starts in some initial state sf ~ p
> selects a policy 7" (based on observations from past episodes)
> uses this policy to generate an episode of length H :

H

Z r(se, at)

h=1

VT(s) = Vf(s) =E™

t t t .t t t t
Sl,al,rl,sz,...,SH,aH,rH

where a; = 7} (s;) and (rf, s ;) = step(sf, a},)

Definition

The (pseudo)-regret of an episodic RL algorithm 7 = (7%)¢ey in T
episodes is T
Ry(m) = Z [max r(s1,a) — r(si, ai)] H = 1,single state s;.
a

t=1

Regret minimization

For simplicity, we will define regret for episodic MDPs, in which

51251.

For each episode t € {1,..., T}, an episodic RL algorithm
> starts in some initial state sf ~ p
> selects a policy 7" (based on observations from past episodes)
> uses this policy to generate an episode of length H :

H

Z r(se, at)

h=1

VT(s) = Vf(s) =E™

t t t .t t t t
Sl,al,rl,sz,...,SH,aH,rH

where a; = 7} (s;) and (rf, s ;) = step(sf, a},)

Definition

The (pseudo)-regret of an episodic RL algorithm 7 = (7%)¢ey in T
episodes is T
Rr(n) = Z (" — pat] H = 1,single state s;.

t=1

Reminder : Minimizing regret in bandits

Small regret requires to introduce the right amount of exploration, which
can be done with

> e-greedy

explore uniformly with probability €, otherwise trust the estimated model

» Upper Confidence Bounds algorithms

act as if the optimistic model were the true model

» Thompson Sampling

act as if a model sampled from the posterior distribution were the true model

Rémy Degenne | Inria, CRIStAL

What is wrong with e-greedy in RL?

Example : Q-Learning with e-greedy

=» e-greedy exploration

o, = { ArgmMaxXae 4 Q:(s,a) with probability 1 — &,
£ ~U(A) with probability €;

=» Q-Learning update
Ot(sta at) = ét—l(sta at) + oy (rt + mgx Qt—l(st; b) - ét—l(sta 3t))

/\ Q:(s,a) is not an unbiased estimate of Q*(s, a)...
(except in the bandit case)

Rémy Degenne | Inria, CRIStAL

What is wrong with e-greedy ?

The RiverSwim MDP :

/\ € can be hard to tune...

Rémy Degenne | Inria, CRIStAL

What is wrong with e-greedy ?

€ — 0.5

ooooo

(N(st) — 1000

otherwise

B c 1 if t <7000
€t = —)2/3 €t = €g

A e-greedy performs undirected exploration

N(st)
credit : Alessandro Lazaric

» alternative : model-based methods in which exploration is targeted

Rémy Degenne | Inria, CRIStAL

towards uncertain regions of the state/action space

Outline

Bandit tools for Regret Minimization in RL
m Optimism for Reinforcement Learning

Rémy Degenne | Inria, CRIStAL

Towards an optimistic learning algorithm

» Reminder : Optimistic Bandit model

set of possible bandit models p = (1, po, ps, pa) :

0

Mt = Il(t) X Ig(t) X Ig(t) X I4(t)

An optimistic bandit model is

pi € argmax p*
HEM;

=» the best arm in pf is A, = argmax UCB,(t)
acA
(arm selected by UCB)

Rémy Degenne | Inria, CRIStAL

Towards an optimistic learning algorithm

» Reminder : Optimistic Bandit model

set of possible bandit models p = (1, po, ps, pa) :

0

Mt = Il(t) X Ig(t) X I3(t) X I4(t)

An optimistic bandit model is

/JJ?_ € argmax max [i,
HEM; 2

=» the best arm in pf is A, = argmax UCB,(t)
acA
(arm selected by UCB)

Rémy Degenne | Inria, CRIStAL

Towards an optimistic learning algorithm

» Extension : Optimistic Markov Decision Process
set of possible MDPs M = (S, A, r,p) :
Mt = {<S,A,r,p) “hpe B; X Bf}

M;" € argmax Vjy,(s1)

An optimistic Markov Decision Process is
MeM; J

=» an optimal policy in M;" is such that

—+ s
m, € argmax max V(s
‘ max, max Vi (s1)

Challenges

© How to construct the set M; of possible MDPs?
© How to numerically compute 7, ?

Rémy Degenne | Inria, CRIStAL - 18

Towards an optimistic learning algorithm

» Extension : Optimistic Markov Decision Process
set of possible MDPs M = (S, A, r,p) :
Mt = {<S,A,r,p) “hpe B; X Bf}

M;" € argmax max V(s1)

An optimistic Markov Decision Process is
MeM; g J

=» an optimal policy in M;" is such that

—+ s
m, € argmax max V(s
‘ max, max Vi (s1)

Challenges

© How to construct the set M; of possible MDPs?
© How to numerically compute 7, ?

Rémy Degenne | Inria, CRIStAL - 18

Step 1 : Constructing M,

M = {(&A, r,p) :V(s,a) € S x A, r(s,a) € Bi(s,a),p(:|s,a) € Bf(s,a)}

Idea : build individual confidence regions
> on the average reward r(s,a) : Bi(s,a) CR
» on the transition probability vector p(-|s, a) : BY(s,a) C A(S)

that rely on the empirical estimates

ne(s,a)

1 § > il and (sl o) =

fi(s,a) = ——~ e ——
t(’) nt(s7a il nt(sza)

ne(s, a) : number of visits of (s, a) until episode t
ne(s, a,s’) : number of times s’ was the next state when the transition (s, a)
was performed until episode t

Goal : Py (M € M,) is close to 1

Rémy Degenne | Inria, CRIStAL

Step 1 : Constructing M,

Me={(S, A, 1,p) : V(s,a) € S x A, r(s,a) € Bi(5.3), p(-[s, a) € Bi(s,2) }

Idea : build individual confidence regions

> on the average reward r(s,a) : Bi(s,a) CR

Assuming bounded rewards,

Bi(s,a) = lft(s, 3)—\/|n(4(nt(s’a))2/5);Ft(57 a)+\/|n(4(nt(s, a))z/é)]

2n(s, a) 2n(s, a)
satisfies

P(Ht € N:r(s,a) ¢ Bi(s, a)) <4.

(Hoeffding inequality + union bound)

Rémy Degenne | Inria, CRIStAL -20

Step 1 : Constructing M,

M = {(S,A, r,p):V(s,a) € S x A, r(s,a) € Bi(s,a),p(:|s,a) € Bf(s,a)}

Idea : build individual confidence regions

> on the average reward r(s,a) : Bi(s,a) CR

Assuming bounded rewards,

Bi(s,a) = [F,_b(s7 a) — (s, a); Fe(s,a) + Bl (s, a)]

satisfies
P(Ht eN: r(s,a) & B(s, a)) <4

(Hoeffding inequality + union bound)

Rémy Degenne | Inria, CRIStAL -20

Step 1 : Constructing M,

M = {(S7 A, r,p):V(s,a) €S x A, r(s,a) € Bi(s,a),p(|s,a) € B (s, a)}
Idea : build individual confidence regions
» on the transition probability vector p(-|s, a) : BY(s,a) C A(S)

Sin(ne(s, a)/5) }

BP(s,a) = {p(.|s7a) € A(S) : [Ip(ls, a) = pe(vls; a)[l; < € ne(s, a)

satisfies
P(at e N: p(|s,a) & BE(s, a)> < 6.

(Freedman inequality + union bound)
[Auer et al., 2008]

Rémy Degenne | Inria, CRIStAL -21

Step 1 : Constructing M,

M = {(S,A, r,p) :V(s,a) € S x A, r(s,a) € Bi(s,a),p(:|s,a) € Bf(s,a)}

Idea : build individual confidence regions
» on the transition probability vector p(-|s, a) : BY(s,a) C A(S)

BY(s.a) = {p(-|s,a) € AWS) : [Ip(ls. a) - pi(-ls. a)ll, < (s, a)}

satisfies
P(Ht e N:p(s,a) ¢ Bf(57a)> <.

(Freedman inequality + union bound)
[Auer et al., 2008]

Rémy Degenne | Inria, CRIStAL -21

Step 1 : Constructing M,

Mo ={(S,A,1,p) : ¥(s,a) € S x A, r(s,a) € 5{(5.2), p(-[s, a) € Bi(s,2) }

Bi(s,a) = [Ft(s, a) — B{(s, a); fe(s,a) + BL(s, a)}
B(s.a) = {p(ls;a) € AS): llp(ls,a) — Ail:ls,a)l; < BE(s.)}

with exploration bonuses :

Bi(s,a) o %
BE(s,a) o w

Rémy Degenne | Inria, CRIStAL

-22

Step 2 : Optimistic Value lteration

Goal : Approximate 7" € argmax max V/, for a set of MDPs
PP & Mem M
s

M = {(S,A, r,p):V¥(s,a) € SxA,r(s,a) € B'(s,a),p(-|s,a) € B°(s, a)}

Recall the optimal solution for a fixed MDP : 7j; = greedy(Q}) where

Q;(S7 a) = r(s, 3) + ZP(S/|S, 3) mbaX Q;+1(5/7 b)

= 7} = greedy(Q;") where

Qp(s:a) = max |r(s,a)+ Z p(s'ls, a) max Q. (s', b)

Rémy Degenne | Inria, CRIStAL

-23

Step 2 : Optimistic Value lteration

*(s,a) = a s,a Js,a)" [max Q. (s, b
Qh () (nP)EB’@a?xBP(s,a) r() + P(|) mbx Qh+1() s'eS
Vi
T\ /A

= V

rCrgiéa) T perg"a(éa) P h+1

- T
= A(s,a) +Bi(s,a)+ max p'Vy,

Pe(s,a) + Br(s,a) + pe(-]s,a) " V,:rl + pefgfé a)(P — pe(:ls,a)) " Vhttl

IA

N N T ~
Rls,0) 4 5i(5,0) & Bel1s.2) Vi + max o = AuCls. 2) Vil

Pi(s,a) + By (s,a) + pe(‘[s,a) T Vilyy + BE(s, @) (H — h)rmax
Pi(s,a) + [Bi(s, a) + BE(s, @) (H = h)rmax] +P: (|5,) T Vi

exploration bonus

Rémy Degenne | Inria, CRIStAL -24

Optimistic algorithm

A family of algorithms

An optimistic algorithm uses in episode t + 1 the exporation policy
’/T;;H = greedy (Qh) where Q(s, a) is an optimistic Q-value function

Qn(s,a) = #(s,a) + Bi(s,a) + Z pe(s'|s, a) m[;axahﬂ(s', b)
s'esS

where f3;(s, a) is some exploration bonus.

From the previous calculation, one can propose

In(n:(s, a)) Sin(n(s, a))
n(s, a) +c ne(s, a)

ﬁt(sv a) = B£(57 a) + Cﬁf(sa a) =

> Bi(s,a) scales in 1/1/n:(s, a) where n;(s, a) is the number of
previous visits to (s, a).

Rémy Degenne | Inria, CRIStAL

-25

Optimistic algorithm

A family of algorithms

An optimistic algorithm uses in episode t + 1 the exporation policy
7r,t,+1 = greedy (Qh) where Q(s, a) is an optimistic Q-value function

Qn(s,a) = f(s,a) + Bi(s,a) + Z pe(s'ls, a) mgxahH(S', b)

s'eS

where f3;(s, a) is some exploration bonus.

» An example of optimistic algorithm in the episodic setting :
UCB-VI [Azar et al., 2017]

» Optimistic algorithms were first proposed in the more complex
average-reward MDPs : UCRL [Auer et al., 2008]

UCB-VI achieves Rt = O(V H2SAT) w.h.p.

Rémy Degenne | Inria, CRIStAL

Outline

Bandit tools for Regret Minimization in RL

m Thompson Sampling for Reinforcement Learning

Rémy Degenne | Inria, CRIStAL

- 26

Posterior Sampling for RL

Bayesian assumption : M is drawn from some prior distribution vjg.

vy € A(M) : posterior distribution over the set of MDPs

Optimism

Posterior Sampling

Set of possible MDPs

Posterior distribution over MDPs

Compute the optimistic MDP

Sample from the posterior distribution

Rémy Degenne | Inria, CRIStAL

-27

Posterior Sampling for Episodic RL

Algorithm 1: PSRL
Input : Prior distribution g

1 fort=12 ... do

2 Sp~p \\ get the starting state of episode t

3 Sample Mf ~ V¢—1 \\ sample an MDP from the current posterior distribution
4 Compute 7 an optimal policy for M,

5 forh=1,... Hdo

6 ap = 7?;(5;,) \\\ choose next action according to 7"

7 Ity Shy1 = Step(sp, ap)

8 end

9 Compute v; based on v;_1 and {(sp, an, rh.sh.l)}ﬁzl

10 end

[Strens, 2000, Osband et al., 2013]

Rémy Degenne | Inria, CRIStAL -28

Outline

Bandit tools for Regret Minimization in RL

m Scalable heuristics inspired by those principles

Rémy Degenne | Inria, CRIStAL

-29

Limitations of optimistic approaches

An important message from optimistic approaches :

=» Do not only trust the estimated MDP Mt, but take into account the
uncertainty in the underlying estimate

Bi(s,a) = [ft(s.a)—,3;(5.,a);ft(s,a)+ﬁ;(s,a)}

Bi(s,a) = {p(ls,2) € AWS) : Ip(1s,2) — pil 15)1 < 52(s.2)}

expressed by exploration bonuses scaling in ,/ﬁ where n(s, a) is the
count (=number of visits) of (s, a).

Scaling for large state action spaces ?
> each state action pair may be visited only very little...

» UCB-VI is quite inefficient in practice for large state-spaces
(efficient, continuous variants is an active research direction)

Rémy Degenne | Inria, CRIStAL -30

A heuristic : count-based exploration

General principle

@ Estimate a “proxi” for the number of visits of a state i;(s)

@ Add an exploration bonus directly to the collected rewards :

rt=n+c ()

© Run any DeepRL algorithm on

D= U {(St, ar, r, 5t+1)}
t

Rémy Degenne | Inria, CRIStAL

-31

A heuristic : count-based exploration

General principle

@ Estimate a “proxi” for the number of visits of a state i;(s)

@ Add an exploration bonus directly to the collected rewards :

rt=n+c ()

© Run any DeepRL algorithm on

D= U {(St, at, ., 5t+1)}
t

Example of pseudo-counts :
» use a hash function, e.g. ¢: S — {—1,1}k

n(@(st)) < n(o(st)) +1
(possibly learn a good hash function)
[Tang et al., 2017]

Rémy Degenne | Inria, CRIStAL

-31

Limitations of Posterior Sampling

An important message from posterior sampling :
=» Adding some noise to the estimated MDP M, is helpful !

Fe(s,a) = Fi(s,a) + es, a)

ﬁt(sl|57 a) = peltfs.a)+ 6;(57 a).

Scaling for large state action spaces ?

» maintaining independent posterior over all state action rewards and
transitions can be costly

» more sophisticated prior distributions encoding some structure and
the associated posteriors can be hard to sample from

=» use other type of (non-Bayesian) randomized exploration ?
Noisy Networks [Fortunato et al., 2017]
Bootstrap DQN [Osband et al., 2016]

Rémy Degenne | Inria, CRIStAL

-32

Outline

A Bandits and Monte-Carlo Tree Search

Rémy Degenne | Inria, CRIStAL

-33

Monte-Carlo Tree Search

MCTS is a family of methods that use possibly random exploration to
explore the tree of possible next states.

Selection Expansion Simulation Backpropagation

))

- e

@O O O "
HEEL 0FL 0O
®© ®®

© ®

01

Figure — An generic MCTS algorithm illustrated for a game

Rémy Degenne | Inria, CRIStAL -34

The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvari, 2006]
UCT in a Game Tree

In a MAX node s (= root player move), select an action
| N(s, b
argmax 5(57 a) +c n(Zb (57))
aeC(s) N(57 a) N(S, a)

N(s, a) : number of visits of (s, a)
S(s,a) : number of visits of (s, a) ending with the root player winning

N=19 visits

n3=6 visits
UCB; = 4/6 + cVIog(N)/n,

Rémy Degenne | Inria, CRIStAL -35

The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvari, 2006]
UCT in a Game Tree

In a MIN node s (= adversary move), select an action

S(s, a) In(>>, N(s, b))

argmin c
st N(s,a) N(s.2)

N(s, a) : number of visits of (s, a)
S(s,a) : number of visits of (s, a) ending with the root player winning

N=19 visits

n3=6 visits
UCB; = 4/6 + cVIog(N)/n,

Rémy Degenne | Inria, CRIStAL

-35

The UCT algorithm

Bandit-Based Monte-Carlo planning : to select a path in the tree, run
a bandit algorithm each time a children (next action) needs to be selected

UCT = UCB for Trees [Kocsis and Szepesvari, 2006]
UCT in a Game Tree

In a MAX node s (= root player move), select an action

Aremma S(s, a) c In (>, N(s, b))
aEC(s) N(Sva) - N(S’ a)

N(s, a) : number of visits of (s, a)
S(s, a) : number of visits of (s, a) ending with the root player winning

When a leaf (or some maximal depth) is reached :

» a playout is performed (play the game until the end with a simple heuristic,
or produce a random evaluation of the leaf position)

> the outcome of the playout (typically 1/0) is stored in all the nodes

visited in the previous trajectory
Rémy Degenne | Inria, CRIStAL

-35

The UCT algorithm

» first good Als for Go where based on variants on UCT

> it remains a heuristic (no sample complexity guarantees, parameter ¢
fined-tuned for each application)

» many variants have been proposed

[Browne et al., 2012]

Rémy Degenne | Inria, CRIStAL

- 36

Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
pure play-out based MCTS

A neural network predicting a policy p € A(A) and a value v € R from
the current state s : (p, v) = f(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s,a), P(s,a)}

Rémy Degenne | Inria, CRIStAL - 37

Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
pure play-out based MCTS

A neural network predicting a policy p € A(A) and a value v € R from
the current state s : (p, v) = f(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s,a), P(s,a)}

Selection step : in some state s, choose the next action to be

argmax
aeC(s) N (5) a)

for some (fine-tuned) constant c.

Rémy Degenne | Inria, CRIStAL

Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network
pure play-out based MCTS

A neural network predicting a policy p € A(A) and a value v € R from
the current state s : (p, v) = fy(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s,a),S(s,a), P(s,a)}

Expansion step : once a leaf s, is reached, compute (p, v) = fp(st).
» Set v to be the value of the leaf
» For all possible next actions b :
=» initialize the count N(s., b) =0
=» initialize the prior probability P(s;, b) = p, (possibly add some noise)

Rémy Degenne | Inria, CRIStAL

Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network

pure play-out based MCTS

A neural network predicting a policy p € A(A) and a value v € R from
the current state s : (p, v) = fy(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s,a), P(s,a)}
Back-up step : for all ancestor s;, a; in the trajectory that end in leaf s,

N(st,at) — N(St,at) +1
S(St, at) — .S(St7 at) + v

Rémy Degenne | Inria, CRIStAL

Alpha Zero

AlphaZero learns a good policy by using a MCTS algorithm guided by a
neural network

pure play-out based MCTS

A neural network predicting a policy p € A(A) and a value v € R from
the current state s : (p, v) = fy(s).

The MCTS algorithm maintains for each visited state/action the counts
and cumulated values + a vector of prior action probabilities :

{N(s, a),S(s,a), P(s,a)}

Output of the planning algorithm ? select an action a at random
according to
N(so, a)"/"

26 N(so, b)1/7

for some (fine-tuned) temperature 7.

m(a) =

Rémy Degenne | Inria, CRIStAL

Training the neural network

» In AlphaGo, fy was trained on a database of games played by human
» In AlphaZero, the network is trained using only self-play J

[Silver et al., 2016, Silver et al., 2017]

Let 6 be the current parameter of the network (p, v) = fy(s.).

@ generate N games where each player uses MCTS(6) to select the

next action a; (and output a probability over actions ;)
Nb games T

p= |J {(stmr-,ifﬂ) }

i=1
i=1
T; : length of game i, rr;, € {—1,0,1} outcome of game i for one player

@ Based on a sub-sample of D, train the neural network using
stochastic gradient descent on the loss function

L(s,7,z;p,v) = (z—v)> =7 " In(p) + c|||?

Rémy Degenne | Inria, CRIStAL -38

A nice actor-critic architecture

AlphaZero alternates between

» The actor : MCTS(6)
generates trajectories guided by the network fy but still exploring

=¥ act as a policy improvement
(N = 25000 games played, each call to MCTS uses 1600 simulations)

» The critic : neural network fy

updates 6 based on trajectories followed by the critic

=¥ evaluate the actor’s policy

Rémy Degenne | Inria, CRIStAL -39

Summary

Bandit tools can be useful in more realistic, contextual models

Bandits tools are useful for Reinforcement Learning :
» UCRL, PSRL : bandit-based exploration for tabular MDPs
» ... that can motivate “deeper” heuristics

Bandit tools lead to big success in Monte-Carlo planning

> ... without proper sample complexity guarantees

=» Unifying theory and practice is a big challenge in RL!

Perspective : bandit tools are also useful beyond RL (i.e. with no
rewards to maximize) : best arm identification, black box optimization...

Rémy Degenne | Inria, CRIStAL - 40

[

B

Agrawal, S. and Goyal, N. (2013).
Thompson sampling for contextual bandits with linear payoffs.

In International conference on machine learning, pages 127-135. PMLR.

Auer, P., Jaksch, T., and Ortner, R. (2008).
Near-optimal regret bounds for reinforcement learning.

Advances in neural information processing systems, 21.

Azar, M. G., Osband, I., and Munos, R. (2017).
Minimax regret bounds for reinforcement learning.
In International Conference on Machine Learning, pages 263-272. PMLR.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I.,
Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012).

A survey of monte carlo tree search methods.
IEEE Transactions on Computational Intelligence and Al in games, 4(1) :1-43.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, |., Graves, A., Mnih,
V., Munos, R., Hassabis, D., Pietquin, O., et al. (2017).

Noisy networks for exploration.
arXiv preprint arXiv :1706.10295.

Kocsis, L. and Szepesvdri, C. (2006).
Bandit based monte-carlo planning.
In European conference on machine learning, pages 282—293. Springer.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. (2016).
Deep exploration via bootstrapped dqgn.
Advances in neural information processing systems, 29.

Osband, I., Russo, D., and Van Roy, B. (2013).
(more) efficient reinforcement learning via posterior sampling.
Advances in Neural Information Processing Systems, 26.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, |., Panneershelvam, V., Lanctot, M., et al.
(2016).

Mastering the game of go with deep neural networks and tree search.

nature, 529(7587) :484-489.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., et al. (2017).

Mastering the game of go without human knowledge.

nature, 550(7676) :354-359.

@ Strens, M. (2000).
A bayesian framework for reinforcement learning.
In ICML, volume 2000, pages 943-950.

@ Tang, H., Houthooft, R., Foote, D., Stooke, A., Xi Chen, O., Duan, Y.,
Schulman, J., DeTurck, F., and Abbeel, P. (2017).

exploration : A study of count-based exploration for deep reinforcement
learning.

Advances in neural information processing systems, 30.

	Preliminary: Contextual Bandits
	Regret minimization in Reinforcement Learning
	Bandit tools for Regret Minimization in RL
	Optimism for Reinforcement Learning
	Thompson Sampling for Reinforcement Learning
	Scalable heuristics inspired by those principles

	Bandits and Monte-Carlo Tree Search

