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Finding the best policy

Reinforcement Learning

▶ Interact with an unknown MDP

▶ Goal : Maximize the expected cumulative reward

Observations :

▶ There exists an optimal policy π∗ independent of the starting state

▶ If an algorithm samples according to πt ≈ π∗, then it gets high
expected cumulative reward
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Results in reinforcement learning

For small MDPs with known dynamics :

Theorem

Value iteration converges in at most log
(

||T⋆(V0)−V0||∞
ϵ

)
/log(1/γ)

iterations and outputs a policy π satisfying ||V π − V ⋆|| ≤ γϵ
1−γ .

Theorem
Policy iteration terminates after a finite number of steps and outputs the
optimal policy π⋆.

▶ No result on the actual sum of rewards obtained during learning.

▶ Only guaranty that we eventually approach π∗.

▶ Results only get worse for larger and unknown MDPs.
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Regret minimization in bandits

Maximizing rewards ↔ selecting a⋆ as much as possible
↔ minimizing the regret [Robbins, 1952]

Rν(A,T ) := Tµ⋆︸︷︷︸
sum of rewards of
an oracle strategy
always selecting a⋆

− E

[
T∑
t=1

Rt

]
︸ ︷︷ ︸

sum of rewards of
the strategyA

Results :

▶ Lower bounds on the regret of consistent algorithms

▶ Algorithms with O(logT ) regret upper bounds
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Finding the best policy in bandits ?

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

For the t-th patient in a clinical study,

▶ chooses a treatment At

▶ observes a response Xt ∈ {0, 1} : P(Xt = 1) = µAt

Maximize rewards ↔ cure as many patients as possible

Alternative goal : identify as quickly as possible the best treatment
(without trying to cure patients during the study)

➜ Pure exploration, Best arm identification [Bubeck et al., 2011]
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Best arm identification

Bandit interaction
At time t,

▶ choose an arm At

▶ observe a response Xt ∈ R, sampled from distribution νAt , with
mean µAt

Best arm identification goal : interact with the bandit for a while, then
return the arm with highest mean.

That is, find the best policy.
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Goals : multiple objectives

Bandit interaction
At time t,

▶ choose an arm At

▶ observe a response Xt ∈ R, sampled from distribution νAt , with
mean µAt

Best arm identification goal : interact with the bandit for a while, then
return the arm with highest mean.

Two goals

▶ Find the best arm with high probability

▶ Stop quickly
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Let’s formalize the problem

K arms with distributions (ν1, . . . , νK ), with means (µ1, . . . , µK )
At each time t, until the algorithm stops,

▶ choose an arm At

▶ observe a response Xt ∈ R, sampled from distribution νAt

▶ decide whether to stop or not

Let τ be the stopping time.
At τ , return Âτ ∈ [K ].

The algorithm makes a mistake if Âτ ̸= a⋆ := argmaxa µa.
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Let’s formalize the problem

K arms with distributions (ν1, . . . , νK ), with means (µ1, . . . , µK )
At each time t, until the algorithm stops,

▶ choose an arm At → sampling rule

▶ observe a response Xt ∈ R, sampled from distribution νAt

▶ decide whether to stop or not

Let τ be the stopping time. → stopping rule
At τ , return Âτ ∈ [K ]. → recommendation rule

The algorithm makes a mistake if Âτ ̸= a⋆ := argmaxa µa.
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Two problems

Two goals

▶ Find the best arm with high probability

▶ Stop quickly

Multiple objectives are hard to optimize simultaneously.

Solution : optimize one objective, under a constraint on the other.

▶ Fixed confidence identification :
Optimize the stopping time of an algorithm, under a constraint on
the probability of mistake

▶ Fixed budget identification :
Optimize the probability of mistake after a given time
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Outline

1 Fixed Budget Identification

2 Fixed Confidence Identification
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Fixed budget identification

Fixed budgete identification : minimize the probability of mistake after a
given time.

Fixed Budget

Horizon T is known in advance, and the algorithm stops at τ = T .

Goal : find an algorithm such that the probability of mistake
Pν(ÂT ̸= a⋆)is as small as possible.
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Simple algorithm : uniform sampling

Uniform sampling algorithm :

▶ sample all arms ⌊T/K⌋ times → sampling rule

▶ return the best arm of the empirical mean vector µ̂T

→ recommendation rule

What is the probability of mistake ?

Pν(ÂT ̸= a⋆) = Pν(argmax
a

µ̂T ,a ̸= argmax
a

µa)

= Pν(∃a ̸= a⋆, µ̂T ,a > µ̂T ,a⋆)

≤
∑
a ̸=a⋆

Pν(µ̂T ,a > µ̂T ,a⋆) .
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Concentration again

We need to bound Pν(µ̂T ,a > µ̂T ,a⋆). Use a concentration inequality .

Hoeffding inequality

Zi i.i.d. σ-sub-Gaussian random variables. For all s ≥ 1

P
(
Z1 + · · ·+ Zs

s
≥ µ+ x

)
≤ e−

sx2

2σ2

Both µ̂T ,a and µ̂T ,a⋆ are averages of T/K i.i.d. random variables, with
respective means µa and µ⋆.

Pν(µ̂T ,a > µ̂T ,a⋆)

= Pν(µ̂T ,a > µ̂T ,a⋆ , µ̂T ,a⋆ ≤ µ⋆ − ∆a

2
) + Pν(µ̂T ,a > µ̂T ,a⋆ , µ̂T ,a⋆ > µ⋆ − ∆a

2
)

≤ Pν(µ̂T ,a⋆ ≤ µ⋆ − ∆a

2
) + Pν(µ̂T ,a > µ⋆ − ∆a

2
)

= Pν(µ̂T ,a⋆ ≤ µ⋆ − ∆a

2
) + Pν(µ̂T ,a > µa +

∆a

2
) ≤ 2 exp

(
−⌊T/K⌋ ∆

2
a

8σ2

)
.
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Error probability of uniform sampling

Theorem
On the fixed budget best arm identification problem with budget T ,
uniform sampling has error probability

Pν(ÂT ̸= a⋆) ≤ 2
∑
a ̸=a⋆

exp

(
−⌊T/K⌋ ∆

2
a

8σ2

)

This error probability is of order exp(−T∆2
min/(8Kσ2)).

▶ Exponentially decreasing with T

▶ Rate of decrease of order ∆2
min/K .
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Oracle
Suppose we sample each arm na times, fixed in advance, not random,
with

∑
a∈[K ] na = T .

Return the best arm of the empirical mean vector µ̂T .

Theorem
On the fixed budget best arm identification problem with budget T , that
sampling scheme has error probability

Pν(ÂT ̸= a⋆) ≤ K
∑
a ̸=a⋆

exp

(
−na⋆

∆2
a

8σ2

)
+
∑
a ̸=a⋆

exp

(
−na

∆2
a

8σ2

)

We call static sampling oracle at µ the allocation (n⋆a )a∈[K ] which
minimizes the probability of error.
It depends on µ (hence the name oracle) and verifies

Pν(ÂT ̸= a⋆) ≤ K exp

(
− T

8σ2
∑

a
1
∆2

a

)
.

where ∆a⋆ = mina ̸=a∗ ∆a.
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Can we match the oracle ?

The static sampling oracle depends on the unknown µ, with

n⋆a ≈ 1/∆2
a∑

b 1/∆
2
b
.

Can we reach the same error probability without knowing µ ?

No, we can’t [Carpentier and Locatelli, 2016]

Let H(µ) =
∑

a
1
∆2

a
. For any fixed budget identification algorithm, there

exists a bandit problem with Gaussian arms with variance 1 such that

Pµ(ÂT ̸= a⋆) ≥ CK ,T exp(− T

H(µ) logK
) .

No algorithm can match the oracle rate of T
H(µ) everywhere.

But can we do almost as well ? Can we get H(µ) logK , since H(µ) is
impossible ?
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UCB-E

UCB for Exploration (UCB-E) [Audibert et al., 2010].

▶ Sample At = argmaxa µ̂t,a +
√

a
Nt,a

.

▶ Recommend ÂT = argmaxa µ̂T ,a.

Theorem

If UCB-E is run with parameter 0 < a ≤ 25
36

T−K
H(µ) , then it satisfies

Pµ(ÂT ̸= a⋆) ≤ 2TK exp(−2a

25
) .

In particular for a = 25
36

T−K
H(µ) , we have Pµ(ÂT ̸= a⋆) ≤ 2TK exp(− T−K

18H(µ) ).

Can match T/H(µ)... if we know H(µ) !
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Successive Rejects

Idea : sample uniformly for a while, then reject the lowest arm. Sample
the remaining arms uniformly, then reject the lowest, etc.

Successive Rejects [Audibert et al., 2010]

Let A1 = [K ], log(K ) = 1
2 +

∑K
k=2

1
k , n0 = 0 and for k ∈ {1, . . . ,K − 1},

nk =

⌈
T − K

log(K )(K + 1− k)

⌉
.

For each phase k = 1, 2, . . . ,K1,

1 For each a ∈ Ak , pull arm a for nk − nk−1 rounds.

2 Let Ak+1 = Ak \ {argmina∈Ak
µ̂nk ,a}.

Return the unique element of AK as ÂT

Rémy Degenne | Inria, CRIStAL - 18



Error probability of Successive Rejects

Theorem
The probability of error of successive rejects satisfies

Pµ(ÂT ̸= a⋆) ≤ K 2 exp

(
− T − K

log(K )H2(µ)

)
,

where H2(µ) = maxk∈[K ]
k
∆2

k
.

H2(µ) ≤ H(µ) ≤ log(K )H2(µ).

▶ Successive Rejects attains T/(H(µ) logK ) everywhere.

Rémy Degenne | Inria, CRIStAL - 19



Open questions in fixed budget identification

▶ What is the complexity of parametric best arm identification ? (with
Kullback-Leibler divergences and not gaps)

▶ What if the question is not to find the best arm, but something else
about the distributions ? Lower bound, algorithms ?

▶ Can we have an algorithm that stops early if the problem is easy ?
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Outline

1 Fixed Budget Identification

2 Fixed Confidence Identification
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Fixed confidence identification

Fixed confidence identification : Optimize the stopping time of an
algorithm, under a constraint on the probability of mistake

δ-correct algorithm

An algorithm is said to be δ-correct on a set of bandit problems D if for
all distribution tuples ν ∈ D,

Pν(Âτ ̸= a⋆) ≤ δ .

Goal : find a δ-correct algorithm such that the expected stopping time
Eν [τ ] is as small as possible.

Variant : minimize Tν,δ such that with probability 1− δ, the algorithm
stops before Tν,δ and is correct.
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Simple algorithm : uniform sampling

Idea : sample all arms in turn, until we can stop.

When is that ?

In addition to the sampling rule and the recommendation rule we need a
stopping rule .
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Stopping rule : confidence intervals

Concentration-based stopping rule :

▶ Maintain confidence intervals for the means of all arms

▶ Once the confidence interval of the best arm does not overlap with
any other, stop

Recommendation rule : empirical best arm.

Suppose that with probability 1− δ, the confidence intervals hold for all
times.
Then with that probability : if the algorithm stops then the answer is
correct.

▶ This is independent of the sampling rule !
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Stopping rule : confidence intervals

Suppose that the arm distributions are σ2-sub-Gaussian. Then

P

∃a,∃t ∈ N, µ̂t,a /∈

µa −

√
2σ2 log( 2Kt

2

δ )

Nt,a
, µa +

√
2σ2 log( 2Kt

2

δ )

Nt,a

 ≤ δ

Proof : Hoeffding’s inequality, union bounds.
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Uniform sampling

▶ Sample uniformly.

▶ Stop when the interval of the best arm does not overlap any other
interval.

▶ Recommend that arm.

Theorem
With probability 1− δ, that algorithm is correct and stops before

Tµ,δ := inf

{
t |

√
2σ2 log(Kt2/δ)

t/K
≤ ∆min

2

}
.

That is, Tµ,δ ≈ K
∆2

min
8σ2 log(K/δ)
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Faster than uniform sampling ?

▶ Stop sampling arms that can be eliminated by another arm :
Successive Elimination [Even-Dar et al., 2006]
Tµ,δ ≈ (

∑
a

1
∆2

a
)8σ2 log(K/δ)

But what about the bad event of probability δ ?
If the best arm is eliminated, the algorithm might run for a very long
time (see board).

▶ Sample the best arm and a well chosen challenger (LUCB
[Kalyanakrishnan et al., 2012], Top Two algorithms
[Russo, 2016, Jourdan et al., 2022])

We can get bounds on the expected stopping time E[τ ], also of order
(
∑

a
1
∆2

a
)σ2 log(1/δ).
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Towards optimality : lower bound

Our goal : get E[τ ] which is exactly as low as possible.

Lower bound
Any δ-correct algorithm on D verifies

Eν [τ ] max
w∈△K

inf
λ∈D:a⋆(λ) ̸=a⋆(ν)

∑
a

waKL(νa, λa) ≥ log
1

2.4δ
.

Proof based on the chain rule and data processing inequality for the
Kullback Leibler divergence.
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GLRT stopping rule

D is a family of parametric distirbutions, parametrized by their means
(technically we need a one-parameter exponential family).
KL(µa, λa) for µa, λa ∈ R, denotes the KL between the corresponding
distributions.
let µ̂t be the maximum likelihood estimator for the means at time t.

Lemma : LLR concentration
Under µ, with probability 1− δ, for all t ∈ N,

t∑
s=1

log
dPµ̂t,As

dPµAs

(Xs,As ) ≤ log(
t2

δ
) .

Like we did with confidence intervals, we can get a stopping rule from
this.
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GLRT stopping rule

Lemma : LLR concentration
Under µ, with probability 1− δ, for all t ∈ N,

t∑
s=1

log
dPµ̂t,As

dPµAs

(Xs,As ) ≤ log(
t2

δ
) .

Stop if

inf
λ∈alt(µ̂t)

t∑
s=1

log
dPµ̂t,As

dPλAs

(Xs,As ) > log(
t2

δ
) ,

where alt(µ̂t) = {λ ∈ D | a⋆(λ) ̸= a⋆(µ̂t)}.
Return Âτ = a⋆(µ̂τ ).

→ ensures δ-correct.
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Why that likelihood ratio test ?
The expectation of a likelihood ratio is a KL :

EX∼µa [log
dPµa

dPλa

(Xa)] = KL(µa, λa) .

Eµ

[
t∑

s=1

log
dPµAs

dPλAs

(Xs,As )

]
= Eµ

[
t∑

s=1

KL(µAs , λAs )

]
=
∑
a

E[Nt,a]KL(µa, λa)

Suppose that we sampled each arm “twa times” and did not stop at t.
Then

log(
t2

δ
) ≥ inf

λ∈alt(µ̂t)

t∑
s=1

log
dPµ̂t,As

dPλAs

(Xs,As )

= t inf
λ∈alt(µ̂t)

∑
a

wa log
dPµ̂t,a

dPλa

(µ̂t,a)

≈ t inf
λ∈alt(µ)

∑
a

waKL(µa, λa) .
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Static proportions oracle

Suppose that we sampled each arm “twa times” (big enough for all a)
and did not stop at t.

log(
t2

δ
) ≳ t inf

λ∈alt(µ)

∑
a

waKL(µa, λa) .

Optimizing over wa, we get something very close to the lower bound : for
that optimal sampling (which depends on µ),

t max
w∈△K

inf
λ∈alt(µ)

∑
a

waKL(µa, λa) ≲ log(
t2

δ
)
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Track and Stop

Track and Stop

Sample every arm once, then at each time t until the algorithm stops,

1 Compute ŵ⋆
t = argmaxw infλ∈alt(µ̂t)

∑
a wa log

dPµ̂t,a

dPλa
(µ̂t,a)

2 If there exists one arm with Nt,a <
√
t, pull it, (forced exploration)

otherwise pull At = argmina Nt,a − tŵ⋆
t,a (tracking)

3 Check the GLRT stopping rule

Recommend the empirical best arm

Theorem
Track-and-Stop is asymptotically optimal, that is

lim
δ→0

Eµ[τ ]

log(1/δ)
≤ 1

maxw∈△K
infλ∈alt(µ)

∑
a waKL(µa, λa)

.

Asymptotically optimal : upper bound identical to lower bound.
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Limitations and improvements of TnS

Computing the argmax can be hard

▶ We can use an iterative method and do only one step at each time.

The forced exploration is harmful in practice

▶ We can introduce optimism to avoid it

Computing the argmin over the alternative could be hard in general
identification problems.
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Open problems in fixed confidence

▶ What is the complexity for δ not close to 0 ? Lower bounds and
matching algorithms ?

▶ Can we have fixed confidence algorithms that we can choose to stop
early, and still get error bounds ?
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Reinforcement Learning

Ongoing research work :

▶ Can we get lower bounds on the time needed to find the best policy
in RL ?

▶ Can we use the notion of alternative and apply methods like TnS ?
(efficiently, preferably)
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