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Finding the best policy

Reinforcement Learning

» Interact with an unknown MDP

» Goal : Maximize the expected cumulative reward

Observations :
» There exists an optimal policy 7* independent of the starting state

> If an algorithm samples according to 7 ~ 7*, then it gets high
expected cumulative reward
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Results in reinforcement learning

For small MDPs with known dynamics :

Value iteration converges in at most log (Wﬂﬁ)/log(l/v)

iterations and outputs a policy 7 satisfying ||[V™ — V*|| < 1777

Policy iteration terminates after a finite number of steps and outputs the
optimal policy 7*.

» No result on the actual sum of rewards obtained during learning.
» Only guaranty that we eventually approach 7*.
» Results only get worse for larger and unknown MDPs.
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Regret minimization in bandits

Maximizing rewards <> selecting a, as much as possible
< minimizing the regret [Robbins, 1952]

:
S
t=1

sum of rewards of
the strategy.A

RL(A,T):= T 14 — E
—

sum of rewards of
an oracle strategy
always selecting a,

Results :
» Lower bounds on the regret of consistent algorithms
» Algorithms with O(log T) regret upper bounds

Rémy Degenne | Inria, CRIStAL



Finding the best policy in bandits ?

& @ =~ i

B(p) B(p2) B(ps)  B(ua) B(ps)

For the t-th patient in a clinical study,
» chooses a treatment A;
» observes a response X; € {0,1} : P(X; = 1) = pa,

Maximize rewards <> cure as many patients as possible

Alternative goal : identify as quickly as possible the best treatment
(without trying to cure patients during the study)
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Finding the best policy in bandits ?

& @ =~ i &

B(p) B(p2) B(ps)  B(ua) B(ps)

For the t-th patient in a clinical study,

» chooses a treatment A;

» observes a response X; € {0,1} : P(X; = 1) = pa,
Maximize rewards <> cure as many patients as possible

Alternative goal : identify as quickly as possible the best treatment
(without trying to cure patients during the study)

=» Pure exploration, Best arm identification [Bubeck et al., 2011]
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Best arm identification

Bandit interaction
At time t,
» choose an arm A;

> observe a response X; € R, sampled from distribution v4,, with
mean fa,

Best arm identification goal : interact with the bandit for a while, then
return the arm with highest mean.
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Best arm identification

Bandit interaction
At time t,
» choose an arm A;

> observe a response X; € R, sampled from distribution v4,, with
mean fa,

Best arm identification goal : interact with the bandit for a while, then
return the arm with highest mean.

That is, find the best policy.

Rémy Degenne | Inria, CRIStAL



Goals : multiple objectives

Bandit interaction
At time t,
» choose an arm A;

> observe a response X; € R, sampled from distribution v4,, with
mean Lia,

Best arm identification goal : interact with the bandit for a while, then
return the arm with highest mean.

Two goals
» Find the best arm with high probability

» Stop quickly
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Let’s formalize the problem

K arms with distributions (11, ..., vk), with means (u1, ..., pk)
At each time t, until the algorithm stops,

» choose an arm A;
> observe a response X; € R, sampled from distribution v4,
» decide whether to stop or not

Let 7 be the stopping time.
At 7, return A, € [K].

The algorithm makes a mistake if A, # a* = argmax, [l
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Let’s formalize the problem

K arms with distributions (11, ..., vk), with means (u1, ..., pk)
At each time t, until the algorithm stops,

» choose an arm A; — sampling rule
> observe a response X; € R, sampled from distribution v4,
» decide whether to stop or not

Let 7 be the stopping time. — stopping rule
At 7, return A, € [K]. = recommendation rule

The algorithm makes a mistake if A, # a* = argmax, fis.
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Two problems

Two goals
» Find the best arm with high probability

» Stop quickly

Multiple objectives are hard to optimize simultaneously.

Solution : optimize one objective, under a constraint on the other.

» Fixed confidence identification
Optimize the stopping time of an algorithm, under a constraint on
the probability of mistake

» Fixed budget identification
Optimize the probability of mistake after a given time
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Fixed Budget Identification
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Fixed budget identification

Fixed budgete identification : minimize the probability of mistake after a
given time.

Fixed Budget

Horizon T is known in advance, and the algorithm stops at 7= T.

Goal : find an algorithm such that the probability of mistake
P, (At # a*)is as small as possible.
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Simple algorithm : uniform sampling

Uniform sampling algorithm :
» sample all arms | T/K | times — sampling rule

> return the best arm of the empirical mean vector fit
— recommendation rule

What is the probability of mistake ?

P, (Ar #a*) = P, (argmax fit , # argmax y,)
= PV(HQ 7é 3*7 ﬂT,a > laT,a*)

S Z IP)//(ﬂT.a > ﬂT,a*) .
a#a*
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Concentration again

We need to bound P, (fit , > fiT a+). Use a concentration inequality .

Hoeffding inequality

Z; i.i.d. o-sub-Gaussian random variables. For all s > 1

]P<Zl++zs _ 2

Zﬂ+X> <e 2?
S|

Both it , and [it .+ are averages of T/K i.i.d. random variables, with
respective means f, and p*.

Pu(ﬁT,a > /:\LT,a*)
A,

)+ Pu(fir.a > fir,ar, it ar > p* — 7)

]

2
~ * A, ~ * A,
< ]PV(MT,a* < o= 7) +PV(HT,3 > u = 7)

=Pu(Ar,a > A100, A1 S p” =

~ * Aa ~ Aa Ag
=P(Are < p” = ) APt > pa+ 57) < 2exp (—LT/KJ 802> .
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Error probability of uniform sampling

On the fixed budget best arm identification problem with budget T,

uniform sampling has error probability

P,(Ar #a*) <2 exp (—LT/KJ 52)

a#a*

This error probability is of order exp(— T A%, /(8Kc?)).

» Exponentially decreasing with T
» Rate of decrease of order A2, /K.

min
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Oracle

Suppose we sample each arm n, times, fixed in advance, not random,
W|th ZQE[K] n; = T
Return the best arm of the empirical mean vector jir.

On the fixed budget best arm identification problem with budget T, that
sampling scheme has error probability

A3 A2
ps a
Pullr #0) <K S ew(ngt) + Sow (-ns)

a#a* a#a*

We call static sampling oracle at p the allocation (n}).c[x] which
minimizes the probability of error.
It depends on 1 (hence the name oracle) and verifies

A T
P,(A )< K —_—— ] .
G2 < oo i

na#,* A

where A «
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Can we match the oracle?

The static sampling oracle depends on the unknown g, with
n; & YN

3T X,y
Can we reach the same error probability without knowing p?

No, we can't [Carpentier and Locatelli, 2016]

Let H(u) =Y, 2. For any fixed budget identification algorithm, there
exists a bandit problem with Gaussian arms with variance 1 such that

T

Pu(Ar # a) > i1 eXP(-w) :

No algorithm can match the oracle rate of % everywhere.

But can we do almost as well ? Can we get H(u)log K, since H(p) is
impossible ?
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UCB-E

UCB for Exploration (UCB-E) [Audibert et al., 2010].

» Sample A; = argmax, i 5 + Nja-

» Recommend A7 = argmax, it ,.

If UCB-E is run with parameter 0 < a < §2 L( , then it satisfies

A 2
P,(Ar #a*) < 2TKexp(—2—;) .

In particular for a = 22 L(,g, we have P, (At # a*) < 2TK exp(— 18H(ﬁ))

Can match T/H(u)... if we know H(p)!
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Successive Rejects

Idea : sample uniformly for a while, then reject the lowest arm. Sample
the remaining arms uniformly, then reject the lowest, etc.

Successive Rejects [Audibert et al., 2010]

Let Ay = [K], Tog(K) = + % , L, np=0and for ke {1,...,K -1},

0 [ T-K l
" llog(K)(K +1— k)
For each phase k =1,2,... K1,
@ For each a € Ay, pull arm a for n, — nk_1 rounds.
Q Let Ax1 = Ak \ {argmin,e 4, fin, a}-

Return the unique element of Ak as AT
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Error probability of Successive Rejects

The probability of error of successive rejects satisfies

A * 2 L
w4 <Ko (i)

where Ha (1) = maxye(k) ka'

Ha(p) < H(p) < log(K)Ha(p).

» Successive Rejects attains T /(H(u)log K) everywhere.
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Open questions in fixed budget identification

» What is the complexity of parametric best arm identification ? (with
Kullback-Leibler divergences and not gaps)

» What if the question is not to find the best arm, but something else
about the distributions ? Lower bound, algorithms?

» Can we have an algorithm that stops early if the problem is easy ?
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Outline

Fixed Confidence ldentification

Rémy Degenne | Inria, CRIStAL

-21



Fixed confidence identification

Fixed confidence identification : Optimize the stopping time of an
algorithm, under a constraint on the probability of mistake

d-correct algorithm

An algorithm is said to be J-correct on a set of bandit problems D if for
all distribution tuples v € D,

P, (A, #a*)<94.

Goal : find a d-correct algorithm such that the expected stopping time
E,[r] is as small as possible.

Variant : minimize T, s such that with probability 1 — 4, the algorithm
stops before T, s and is correct.
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Simple algorithm : uniform sampling

Idea : sample all arms in turn, until we can stop.

When is that?

In addition to the sampling rule and the recommendation rule we need a
stopping rule .
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Stopping rule : confidence intervals

Concentration-based stopping rule :
» Maintain confidence intervals for the means of all arms

» Once the confidence interval of the best arm does not overlap with
any other, stop

Recommendation rule : empirical best arm.

Suppose that with probability 1 — §, the confidence intervals hold for all
times.

Then with that probability : if the algorithm stops then the answer is
correct.

» This is independent of the sampling rule!
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Stopping rule : confidence intervals

Suppose that the arm distributions are o?-sub-Gaussian. Then

202 log(2K2 202 log( 2KE
P{3a,3teN, fead |na— %m,uﬁ %(5) <6
t,a t,a

Proof : Hoeffding's inequality, union bounds.
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Uniform sampling

» Sample uniformly.

> Stop when the interval of the best arm does not overlap any other
interval.

» Recommend that arm.

With probability 1 — §, that algorithm is correct and stops before

2 2 .
Ts = inf{tI N 20 lotg/(?t /%) A;'"} .

That is, T, ~ 5802 log(K/J)
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Faster than uniform sampling ?

» Stop sampling arms that can be eliminated by another arm :
Successive Elimination [Even-Dar et al., 2006]

Tus = (32, 27)802 log(K /)

But what about the bad event of probability § 7
If the best arm is eliminated, the algorithm might run for a very long
time (see board).

» Sample the best arm and a well chosen challenger (LUCB
[Kalyanakrishnan et al., 2012], Top Two algorithms
[Russo, 2016, Jourdan et al., 2022])

We can get bounds on the expected stopping time E[7], also of order

(5, )02 log(1/5).
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Towards optimality : lower bound

Our goal : get E[7] which is exactly as low as possible.

Lower bound

Any J-correct algorithm on D verifies

1
E, KL(va, A\s) > log —— .
[7] We AR AED: a*(A);éa* V) Z waKL(v3, Aa) > log 2.46

Proof based on the chain rule and data processing inequality for the
Kullback Leibler divergence.
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GLRT stopping rule

D is a family of parametric distirbutions, parametrized by their means
(technically we need a one-parameter exponential family).

KL(pa, As) for pa, A € R, denotes the KL between the corresponding
distributions.

let fi; be the maximum likelihood estimator for the means at time t.

Lemma : LLR concentration
Under p, with probability 1 — 4, for all t € N,

Like we did with confidence intervals, we can get a stopping rule from
this.
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GLRT stopping rule

Lemma : LLR concentration
Under p, with probability 1 — 4, for all t € N,

2

. t
Zlo T (X, ) < log( ).

Stop if
log Prcn, Xoa) > 1
A@Itho ( As) og( )

where alt(fi;) = {A € D | a*(\) # a*(fie) }.
Return A; = a*(f2,).

— ensures J-correct.
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Why that likelihood ratio test ?

The expectation of a likelihood ratio is a KL :

Bx o8 S22 ()] = KL(113.A,)

dPPy

t t
dP#As
£ 300 2 060)| <. | S0 )| = BN 0)

Suppose that we sampled each arm “tw, times" and did not stop at t.
Then

2

| ) > f | P, — s
og( LA z:: og (%)

—¢ f | l"ta/\
Aﬁwz%%d (Aea)

~t inf w,KL( 114,
)\Ealt(,u)Z a Ma a
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Static proportions oracle

Suppose that we sampled each arm “tw, times" (big enough for all a)
and did not stop at t.

2

t
|og( t)\elar?f Z woKL(pa, A

Optimizing over w,, we get something very close to the lower bound : for
that optimal sampling (which depends on ),
2

t
) < t
tWrréZXK /\elaqtf(u) g waKL(pa, As) S log( 5)
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Track and Stop

Track and Stop

Sample every arm once, then at each time t until the algorithm stops,

N . dPs, , /A
@ Compute W} = argmax,, infycaie(n,) D, Wa log T (fit,2)

@ |[f there exists one arm with N; , < V't, pull it, (forced exploration)
otherwise pull A; = argmin, N, — tWw;, (tracking)

© Check the GLRT stopping rule

Recommend the empirical best arm

Track-and-Stop is asymptotically optimal, that is

lim E“[T] < !
60 lOg(1/5) T MaXweAy inf}\ealt(,u) Ea WaKL(,Ufa: /\a) .

Asymptotically optimal : upper bound identical to lower bound.
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Limitations and improvements of TnS

Computing the argmax can be hard

» We can use an iterative method and do only one step at each time.

The forced exploration is harmful in practice

» We can introduce optimism to avoid it

Computing the argmin over the alternative could be hard in general
identification problems.
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Open problems in fixed confidence

» What is the complexity for § not close to 07 Lower bounds and
matching algorithms ?

» Can we have fixed confidence algorithms that we can choose to stop
early, and still get error bounds?
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Reinforcement Learning

Ongoing research work :

» Can we get lower bounds on the time needed to find the best policy
in RL?

» Can we use the notion of alternative and apply methods like TnS?
(efficiently, preferably)
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Best arm identification in multi-armed bandits.
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