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Stochastic bandit : a simple MDP

A stochastic multi-armed bandit model can be viewed as an MDP with a
single state s0

▶ unknown reward distribution νs0,a with mean r(s0, a)

▶ transition p(s0|s0, a) = 1

▶ the agent repeatedly chooses between the same set of actions

an agent facing arms in a Multi-Armed Bandit
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Sequential resource allocation

Clinical trials

▶ K treatments for a given symptom (with unknown effect)

▶ What treatment should be allocated to the next patient based on
responses observed on previous patients ?

Online advertisement

▶ K adds that can be displayed

▶ Which add should be displayed for a user, based on the previous
clicks of previous (similar) users ?
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The Multi-Armed Bandit Setup

K arms ↔ K rewards streams (Xa,t)t∈N

At round t, an agent :

▶ chooses an arm At

▶ receives a reward Rt = XAt ,t

Sequential sampling strategy (bandit algorithm) :

At+1 = Ft(A1,R1, . . . ,At ,Rt).

Goal : Maximize
∑T

t=1 Rt .
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The Stochastic Multi-Armed Bandit Setup

K arms ↔ K probability distributions : νa has mean µa

ν1 ν2 ν3 ν4 ν5

At round t, an agent :

▶ chooses an arm At

▶ receives a reward Rt = XAt ,t ∼ νAt

Sequential sampling strategy (bandit algorithm) :

At+1 = Ft(A1,R1, . . . ,At ,Rt).

Goal : Maximize E
[∑T

t=1 Rt

]
➜ a particular reinforcement learning problem

.
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Clinical trials

Historical motivation [Thompson, 1933]

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

For the t-th patient in a clinical study,

▶ chooses a treatment At

▶ observes a response Rt ∈ {0, 1} : P(Rt = 1|At = a) = µa

Goal : maximize the expected number of patients healed

Rémy Degenne | Inria, CRIStAL - 5



Online content optimization

Modern motivation ($$) [Li et al., 2010]
(recommender systems, online advertisement)

ν1 ν2 ν3 ν4 ν5

For the t-th visitor of a website,

▶ recommend a movie At

▶ observe a rating Rt ∼ νAt (e.g. Rt ∈ {1, . . . , 5})

Goal : maximize the sum of ratings
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Outline

1 Performance measure and first strategies

2 Mixing Exploration and Exploitation
Upper Confidence Bound algorithms

3 Bayesian bandit algorithms
Thompson Sampling
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Regret of a bandit algorithm

Bandit instance : ν = (ν1, ν2, . . . , νK ), mean of arm a : µa = EX∼νa [X ].

µ⋆ = max
a∈{1,...,K}

µa a⋆ = argmax
a∈{1,...,K}

µa.

Maximizing rewards ↔ selecting a⋆ as much as possible
↔ minimizing the regret [Robbins, 1952]

Rν(A,T ) := Tµ⋆︸︷︷︸
sum of rewards of
an oracle strategy
always selecting a⋆

− E

[
T∑
t=1

Rt

]
︸ ︷︷ ︸

sum of rewards of
the strategyA

What regret rate can we achieve ?

➜ consistency : Rν(A,T )
T → 0

➜ can we be more precise ?
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Regret decomposition

Na(t) : number of selections of arm a in the first t rounds
∆a := µ⋆ − µa : sub-optimality gap of arm a

Regret decomposition

Rν(A,T ) =
K∑

a=1

∆aE [Na(T )] .

Proof.
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Regret decomposition

Na(t) : number of selections of arm a in the first t rounds
∆a := µ⋆ − µa : sub-optimality gap of arm a

Regret decomposition

Rν(A,T ) =
K∑

a=1

∆aE [Na(T )] .

A strategy with small regret should :

▶ select not too often arms for which ∆a > 0

▶ ... which requires to try all arms to estimate the values of the ∆a’s

⇒ Exploration / Exploitation trade-off
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Two naive strategies

▶ Idea 1 : Uniform Exploration

Draw each arm T/K times

⇒ EXPLORATION
Rν(A,T ) =

(
1

K

∑
a:µa>µ⋆

∆a

)
T

▶ Idea 2 : Follow The Leader

At+1 = argmax
a∈{1,...,K}

µ̂a(t)

where

µ̂a(t) =
1

Na(t)

t∑
s=1

Xa,s1(As=a)

is an estimate of the unknown mean µa.

⇒ EXPLOITATION Rν(A,T ) ≥ (1− µ1)× µ2 × (µ1 − µ2)T

(Bernoulli arms)
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At+1 = argmax
a∈{1,...,K}

µ̂a(t)

where

µ̂a(t) =
1

Na(t)

t∑
s=1

Xa,s1(As=a)

is an estimate of the unknown mean µa.

⇒ EXPLOITATION Rν(A,T ) ≥ (1− µ1)× µ2 × (µ1 − µ2)T

(Bernoulli arms)
Rémy Degenne | Inria, CRIStAL - 10



A better idea : Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
▶ draw each arm m times

▶ compute the empirical best arm â = argmaxa µ̂a(Km)

▶ keep playing this arm until round T

At+1 = â for t ≥ Km

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.

Rν(ETC,T ) = ∆E[N2(T )]

= ∆E [m + (T − 2m)1 (â = 2)]

≤ ∆m + (∆T )× P (µ̂2,m ≥ µ̂1,m)

µ̂a,m : empirical mean of the first m observations from arm a

Rémy Degenne | Inria, CRIStAL - 11



A better idea : Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
▶ draw each arm m times

▶ compute the empirical best arm â = argmaxa µ̂a(Km)

▶ keep playing this arm until round T
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A better idea : Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
▶ draw each arm m times

▶ compute the empirical best arm â = argmaxa µ̂a(Km)

▶ keep playing this arm until round T

At+1 = â for t ≥ Km

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.

Rν(ETC,T ) = ∆E[N2(T )]

= ∆E [m + (T − 2m)1 (â = 2)]

≤ ∆m + (∆T )× P (µ̂2,m ≥ µ̂1,m)

µ̂a,m : empirical mean of the first m observations from arm a
→ requires a concentration inequality
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Intermezzo : Concentration Inequalities

Sub-Gaussian random variables : Z is σ2-subGaussian if

E[Z ] = µ and E
[
eλ(Z−µ)

]
≤ e

λ2σ2

2 . (1)

Hoeffding inequality

Zi i.i.d. satisfying (1). For all s ≥ 1

P
(
Z1 + · · ·+ Zs

s
≥ µ+ x

)
≤ e−

sx2

2σ2

Proof : Cramér-Chernoff method

▶ νa bounded in [a, b] : (b − a)2/4 sub-Gaussian (Hoeffding’s lemma)

▶ νa = N (µa, σ
2) : σ2 sub-Gaussian
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A better idea : Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
▶ draw each arm m times

▶ compute the empirical best arm â = argmaxa µ̂a(Km)

▶ keep playing this arm until round T

At+1 = â for t ≥ Km

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.

Assumption : ν1, ν2 are bounded in [0, 1].

Rν(T ) = ∆E[N2(T )]

= ∆E [m + (T − 2m)1 (â = 2)]

≤ ∆m + (∆T )× P (µ̂2,m ≥ µ̂1,m)

µ̂a,m : empirical mean of the first m observations from arm a
→ Hoeffding’s inequality
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µ̂a,m : empirical mean of the first m observations from arm a
→ Hoeffding’s inequality
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A better idea : Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
▶ draw each arm m times

▶ compute the empirical best arm â = argmaxa µ̂a(Km)

▶ keep playing this arm until round T

At+1 = â for t ≥ Km

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.

Assumption : ν1, ν2 are bounded in [0, 1].

For m = 2
∆2 log

(
T∆2

2

)
,

Rν(ETC,T ) ≤ 2

∆

[
log

(
T∆2

2

)
+ 1

]
.

+ logarithmic regret !

− requires the knowledge of T and ∆

Rémy Degenne | Inria, CRIStAL - 14



A better idea : Explore-Then-Commit

Given m ∈ {1, . . . ,T/K},
▶ draw each arm m times

▶ compute the empirical best arm â = argmaxa µ̂a(Km)
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Outline
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2 Mixing Exploration and Exploitation
Upper Confidence Bound algorithms

3 Bayesian bandit algorithms
Thompson Sampling
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A simple strategy : ϵ-greedy

The ϵ-greedy rule [Sutton and Barto, 2018] is the simplest way to
alternate exploration and exploitation.

ϵ-greedy strategy

At round t,

▶ with probability ϵ
At ∼ U({1, . . . ,K})

▶ with probability 1− ϵ

At = argmax
a=1,...,K

µ̂a(t).

➜ Linear regret : Rν (ϵ-greedy,T ) ≥ ϵK−1
K ∆minT .

∆min = min
a:µa<µ⋆

∆a
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A simple strategy : ϵ-greedy

A simple fix :

ϵt-greedy strategy

At round t,

▶ with probability ϵt := min
(
1, K

d2t

)
At ∼ U({1, . . . ,K})

▶ with probability 1− ϵt
At = argmax

a=1,...,K
µ̂a(t − 1).

Theorem [Auer, 2002]

If 0 < d ≤ ∆min, Rν (ϵt-greedy,T ) = O
(

K log(T )
d2

)
.

➜ requires the knowledge of a lower bound on ∆min...
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The optimism principle

Step 1 : construct a set of statistically plausible models

▶ For each arm a, build a confidence interval on the mean µa :

Ia(t) = [LCBa(t),UCBa(t)]

LCB = Lower Confidence Bound
UCB = Upper Confidence Bound

Figure – Confidence intervals on the means after t rounds

Rémy Degenne | Inria, CRIStAL - 19



The optimism principle

Step 2 : act as if the best possible model were the true model
(optimism in face of uncertainty)

Figure – Confidence intervals on the means after t rounds

Optimistic bandit model = argmax
µ∈C(t)

max
a=1,...,K

µa

▶ That is, select

At+1 = argmax
a=1,...,K

UCBa(t).
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How to build confidence intervals ?

We need UCBa(t) such that

P (µa ≤ UCBa(t)) ≳ 1− t−1.

➜ tool : concentration inequalities

Example : rewards are σ2 sub-Gaussian

Hoeffding inequality, reloaded

Zi i.i.d. satisfying (1). For all s ≥ 1

P
(
Z1 + · · ·+ Zs

s
< µ− x

)
≤ e−

sx2

2σ2
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How to build confidence intervals ?

We need UCBa(t) such that

P (µa ≤ UCBa(t)) ≳ 1− t−1.

➜ tool : concentration inequalities

Example : rewards are σ2 sub-Gaussian

Hoeffding inequality, reloaded

Zi i.i.d. satisfying (1). For all s ≥ 1

P
(
Z1 + · · ·+ Zs

s
< µ− x

)
≤ e−

sx2

2σ2

�Cannot be used directly in a bandit model as the number of
observations from each arm is random !
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How to build confidence intervals ?

▶ Na(t) =
∑t

s=1 1(As=a) number of selections of a after t rounds

▶ µ̂a,s =
1
s

∑s
k=1 Ya,k average of the first s observations from arm a

▶ µ̂a(t) = µ̂a,Na(t) empirical estimate of µa after t rounds

Hoeffding inequality + union bound

P

(
µa ≤ µ̂a(t) + σ

√
β log(t)

Na(t)

)
≥ 1− 1

t
β
2 −1

Proof.

P

(
µa > µ̂a(t) + σ

√
β log(t)

Na(t)

)
≤ P

(
∃s ≤ t : µa > µ̂a,s + σ

√
β log(t)

s

)

≤
t∑

s=1

P

(
µ̂a,s < µa − σ

√
β log(t)

s

)
≤

t∑
s=1

1

tβ/2
=

1

tβ/2−1
.
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A first UCB algorithm

UCB(α) selects At+1 = argmaxa UCBa(t) where

UCBa(t) = µ̂a(t)︸ ︷︷ ︸
exploitation term

+

√
α log(t)

Na(t)︸ ︷︷ ︸
exploration bonus

.

▶ popularized by [Auer, 2002] for bounded rewards : UCB1, for α = 2

▶ the analysis was UCB(α) was further refined to hold for α > 1/2,
still for bounded rewards [Bubeck, 2010]
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A UCB algorithm in action
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Regret of UCB(α)

Context : σ2 sub-Gaussian rewards

UCBa(t) = µ̂a(t) +

√
2σ2(log(t) + c log log(t))

Na(t)

Theorem [Cappé et al.’13]

For c ≥ 3, the UCB algorithm associated to the above index satisfy

E[Na(T )] ≤ 2σ2

(µ⋆ − µa)2
log(T ) + Cµ

√
log(T ).

if the rewards distributions are σ2 sub-Gaussian.

▶ regret bound for Gaussian distribution with variance σ2 :

Rν(UCB(α),T ) = 2σ2

( ∑
a:µa<µ⋆

1

∆a

)
log(T ) +O(

√
log(T ))

for α = 2σ2.
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Regret of UCB(α)

Context : σ2 sub-Gaussian rewards

UCBa(t) = µ̂a(t) +

√
2σ2(log(t) + c log log(t))

Na(t)

Theorem [Cappé et al.’13]

For c ≥ 3, the UCB algorithm associated to the above index satisfy

E[Na(T )] ≤ 2σ2

(µ⋆ − µa)2
log(T ) + Cµ

√
log(T ).

if the rewards distributions are σ2 sub-Gaussian.

▶ regret bound for distributions that are bounded in [0, 1] :

Rν(UCB(α),T ) =
1

2

( ∑
a:µa<µ⋆

1

∆a

)
log(T ) +O(

√
log(T ))

for α = 1/2.
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Is UCB(α) the best possible algorithm ?

Context : a parametric bandit model where each arm is parameterized
by its mean ν = (νµ1 , . . . , νµK

), µa ∈ I.

ν ↔ µ = (µ1, . . . , µK )

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(µ, µ′) := KL (νµ, νµ′) = EX∼νµ

[
log

dνµ
dνµ′

(X )

]

Lower bound [Lai et al., 1985]

For uniformly good algorithm,

µa < µ⋆ ⇒ lim inf
T→∞

Eµ[Na(T )]

logT
≥ 1

kl(µa, µ⋆)
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by its mean ν = (νµ1 , . . . , νµK

), µa ∈ I.

ν ↔ µ = (µ1, . . . , µK )

Key tool : Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(µ, µ′) := µ log

(
µ

µ′

)
+ (1− µ) log

(
1− µ

1− µ′

)
(Bernoulli bandits)

Lower bound [Lai et al., 1985]

For uniformly good algorithm,

µa < µ⋆ ⇒ lim inf
T→∞

Eµ[Na(T )]

logT
≥ 1

kl(µa, µ⋆)
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Comparing upper and lower bounds

For Gaussian bandits with variance σ2,

▶ Upper bound for UCB(2σ2) :

Rν(UCB,T ) ≲
∑

a:µa<µ⋆

2σ2

(µ⋆ − µa)
log(T )

▶ Lower bound : for large values of T ,

Rν(A,T ) ≳
∑

a:µa<µ⋆

(µ⋆ − µa)

kl(µa, µ⋆)
log (T )

➜ UCB is asymptotically optimal for Gaussian bandits !
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Comparing upper and lower bounds

For Bernoulli bandits (that are bounded in [0, 1]),

▶ Upper bound for UCB(1/2) :

Rν(UCB,T ) ≲
∑

a:µa<µ⋆

1

2(µ⋆ − µa)
log(T )

▶ Lower bound : for large values of T ,

Rν(A,T ) ≳
∑

a:µa<µ⋆

(µ⋆ − µa)

kl(µa, µ⋆)
log (T )

➜ UCB is not asymptotically optimal for Bernoulli bandits...

Pinsker’s inequality : kl(µ, µ′) ≥ 2(µ− µ′)2
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For Bernoulli bandits (that are bounded in [0, 1]),

▶ Upper bound for UCB(1/2) :

Rν(UCB,T ) ≲
∑

a:µa<µ⋆

1

2(µ⋆ − µa)
log(T )

▶ Lower bound : for large values of T ,

Rν(A,T ) ≳
∑

a:µa<µ⋆

(µ⋆ − µa)

kl(µa, µ⋆)
log (T )

➜ UCB is not asymptotically optimal for Bernoulli bandits...

Pinsker’s inequality : kl(µ, µ′) ≥ 2(µ− µ′)2
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The kl-UCB algorithm

Exploits the KL-divergence in the lower bound !

UCBa(t) = max

{
q ∈ [0, 1] : kl (µ̂a(t), q) ≤

log(t)

Na(t)

}
.

q
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A tighter concentration inequality [Garivier and Cappé, 2011]

For Bernoulli rewards

P(UCBa(t) > µa) ≳ 1− 1

t log(t)
.
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An asymptotically optimal algorithm

kl-UCB selects At+1 = argmaxa UCBa(t) with

UCBa(t) = max

{
q ∈ [0, 1] : kl (µ̂a(t), q) ≤

log(t) + c log log(t)

Na(t)

}
.

Theorem [Cappé et al., 2013]

If c ≥ 3, for every arm such that µa < µ⋆,

Eµ[Na(T )] ≤ 1

kl(µa, µ⋆)
log(T ) + Cµ

√
log(T ).

▶ kl-UCB is asymptotically optimal for Bernoulli bandits :

Rµ(kl-UCB,T ) ≃

( ∑
a:µa<µ⋆

µ⋆ − µa

kl(µa, µ⋆)

)
log(T ).
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Outline
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Upper Confidence Bound algorithms

3 Bayesian bandit algorithms
Thompson Sampling
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Frequentist versus Bayesian bandit

Context : parametric bandit model νµ = (νµ1 , . . . , νµK
).

▶ Two probabilistic models

Frequentist model Bayesian model
µ1, . . . , µK µ1, . . . , µK drawn from a

unknown parameters prior distribution : µa ∼ πa

arm a : (Ya,s)s
i.i.d.∼ νµa arm a : (Ya,s)s |µ

i.i.d.∼ νµa

where (Ya,s) is the sequence of successive rewards obtained from arm a
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Frequentist and Bayesian algorithms

▶ Two types of tools to build bandit algorithms :

Frequentist tools Bayesian tools

MLE estimators of the means Posterior distributions
Confidence Intervals πt

a = L(µa|Ya,1, . . . ,Ya,Na(t))
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Example : Bernoulli bandits

Bernoulli bandit model µ = (µ1, . . . , µK )

▶ Bayesian view : µ1, . . . , µK are random variables

prior distribution : µa ∼ U([0, 1])

➜ posterior distribution :

πa(t) = L (µa|R1, . . . ,Rt)

= Beta
(
Sa(t)︸ ︷︷ ︸
#ones

+1,Na(t)− Sa(t)︸ ︷︷ ︸
#zeros

+1
)

Sa(t) =
∑t

s=1 Rs1(As=a) sum of the rewards.
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Bayesian algorithm

A Bayesian bandit algorithm exploits the posterior distributions of the
means to decide which arm to select.
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Rémy Degenne | Inria, CRIStAL - 35



Outline

1 Performance measure and first strategies

2 Mixing Exploration and Exploitation
Upper Confidence Bound algorithms

3 Bayesian bandit algorithms
Thompson Sampling
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Thompson Sampling

A very old idea : [Thompson, 1933].

Two equivalent interpretations :

▶ “select an arm at random according to its probability of being the best”

▶ “draw a possible bandit model from the posterior distribution and act
optimally in this sampled model” ̸= optimistic

Thompson Sampling : a randomized Bayesian algorithm{
∀a ∈ {1..K}, θa(t) ∼ πa(t)
At+1 = argmax

a=1...K
θa(t).
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Thompson Sampling is asymptotically optimal

Problem-dependent regret

∀ϵ > 0, Eµ[Na(T )] ≤ (1 + ϵ)
1

kl(µa, µ⋆)
log(T ) + oµ,ϵ(log(T )).

This results holds :

▶ for Bernoulli bandits, with a uniform prior
[Kaufmann et al., 2012, Agrawal and Goyal, 2013]

▶ for Gaussian bandits, with Gaussian prior [Agrawal and Goyal, 2017]

▶ for exponential family bandits, with Jeffrey’s prior
[Korda et al., 2013]
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Bayesian versus Frequentist algorithms

▶ Regret up to T = 2000 (average over N = 200 runs)
as a function of T (resp. log(T ))

µ = [0.1 0.15 0.2 0.25]
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Summary

Several ways to solve the exploration/exploitation trade-off, mostly

▶ the optimism-in-face-of-uncertainty principle (UCB)

▶ posterior sampling (Thompson Sampling)

What do they need ?

▶ UCB : the capacity to build a confidence region for the unknown
model parameters and compute the best possible model

▶ Thompson Sampling : the ability to define a prior distribution and
sample from the corresponding posterior distribution

➜ these principles can be extended to more challenging bandit
problems and to reinforcement learning
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The Bandit Book

by [Lattimore and Szepesvári, 2020]

https://tor-lattimore.com/downloads/book/book.pdf
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