Sequential Learning Multi-Armed Bandits

> Rémy Degenne (remy.degenne@inria.fr)

Centrale Lille, 2024/2025

Stochastic bandit : a simple MDP

A stochastic multi-armed bandit model can be viewed as an MDP with a single state s_0

- **In unknown reward distribution** $\nu_{s_0,a}$ with mean $r(s_0, a)$
- ightharpoontriangleright transition $p(s_0|s_0, a) = 1$
- \triangleright the agent repeatedly chooses between the same set of actions

an agent facing arms in a Multi-Armed Bandit

Sequential resource allocation

Clinical trials

 \triangleright K treatments for a given symptom (with unknown effect)

▶ What treatment should be allocated to the next patient based on responses observed on previous patients ?

Online advertisement

 \triangleright K adds that can be displayed

 \triangleright Which add should be displayed for a user, based on the previous clicks of previous (similar) users ?

The Multi-Armed Bandit Setup

K arms \leftrightarrow K rewards streams $(X_{a,t})_{t\in\mathbb{N}}$

At round t , an agent :

- \blacktriangleright chooses an arm A_t
- receives a reward $R_t = X_{A_t,t}$

Sequential sampling strategy (bandit algorithm) :

$$
A_{t+1}=F_t(A_1,R_1,\ldots,A_t,R_t).
$$

Goal : Maximize $\sum_{t=1}^{T} R_t$.

The Stochastic Multi-Armed Bandit Setup

K arms \leftrightarrow K probability distributions : ν_a has mean μ_a

At round t , an agent :

- \blacktriangleright chooses an arm A_t
- ▶ receives a reward $R_t = X_{A_t,t} \sim \nu_{A_t}$

Sequential sampling strategy (bandit algorithm) :

$$
A_{t+1}=F_t(A_1,R_1,\ldots,A_t,R_t).
$$

Goal : Maximize
$$
\mathbb{E}\left[\sum_{t=1}^{T} R_t\right]
$$

 \rightarrow a particular reinforcement learning problem

Clinical trials

Historical motivation [\[Thompson, 1933\]](#page-59-0)

For the t-th patient in a clinical study,

- \blacktriangleright chooses a treatment A_t
- ▶ observes a response $R_t \in \{0,1\} : \mathbb{P}(R_t = 1 | A_t = a) = \mu_a$

Goal : maximize the expected number of patients healed

Online content optimization

Modern motivation (\$\$) [\[Li et al., 2010\]](#page-58-0) (recommender systems, online advertisement)

For the t-th visitor of a website,

- recommend a movie A_t
- ▶ observe a rating $R_t \sim \nu_{A_t}$ (e.g. $R_t \in \{1, ..., 5\}$)

Goal : maximize the sum of ratings

Outline

1 [Performance measure and first strategies](#page-7-0)

2 [Mixing Exploration and Exploitation](#page-22-0) [Upper Confidence Bound algorithms](#page-25-0)

3 [Bayesian bandit algorithms](#page-47-0) ■ [Thompson Sampling](#page-52-0)

Regret of a bandit algorithm

Bandit instance : $\nu = (\nu_1, \nu_2, \dots, \nu_K)$, mean of arm $a : \mu_a = \mathbb{E}_{X \sim \nu_a}[X]$.

$$
\mu_{\star} = \max_{a \in \{1, \ldots, K\}} \mu_a \quad a_{\star} = \operatorname*{argmax}_{a \in \{1, \ldots, K\}} \mu_a.
$$

Regret decomposition

 $N_a(t)$: number of selections of arm a in the first t rounds $\Delta_a := \mu_{\star} - \mu_a$: sub-optimality gap of arm a

Proof.

Regret decomposition

 $N_a(t)$: number of selections of arm a in the first t rounds $\Delta_a := \mu_{\star} - \mu_a$: sub-optimality gap of arm a

Regret decomposition

$$
\mathcal{R}_{\nu}(\mathcal{A},\mathcal{T})=\sum_{a=1}^K \Delta_a \mathbb{E}\left[N_a(\mathcal{T})\right].
$$

A strategy with small regret should :

- ► select not too often arms for which Δ _a > 0
- \triangleright ... which requires to try all arms to estimate the values of the Δ_a 's

\Rightarrow Exploration / Exploitation trade-off

Two naive strategies

▶ Idea 1 : Uniform Exploration

Draw each arm T/K times

$$
\Rightarrow \text{EXPLORATION } \mathcal{R}_{\nu}(\mathcal{A}, \mathcal{T}) = \left(\frac{1}{K} \sum_{a:\mu_a > \mu_{\star}} \Delta_a\right) \mathcal{T}
$$

Two naive strategies

▶ Idea 1 : Uniform Exploration

Draw each arm T/K times

$$
\Rightarrow \text{EXPLORATION } \mathcal{R}_{\nu}(\mathcal{A}, \mathcal{T}) = \left(\frac{1}{K} \sum_{a:\mu_a > \mu_{\star}} \Delta_a\right) \mathcal{T}
$$

▶ Idea 2 : Follow The Leader

where

$$
A_{t+1} = \underset{\mathbf{a} \in \{1, \dots, K\}}{\operatorname{argmax}} \hat{\mu}_a(t)
$$

$$
\hat{\mu}_a(t) = \frac{1}{N_a(t)} \sum_{s=1}^t X_{a,s} \mathbb{1}_{(A_s = a)}
$$

is an estimate of the unknown mean μ_a .

$$
\Rightarrow \text{EXPLOITATION} \quad \mathcal{R}_{\nu}(\mathcal{A}, \mathcal{T}) \ge (1 - \mu_1) \times \mu_2 \times (\mu_1 - \mu_2) \mathcal{T}
$$
\n(Bernoulli arms)

Given $m \in \{1, \ldots, T/K\}$,

- \blacktriangleright draw each arm m times
- ▶ compute the empirical best arm \hat{a} = argmax_a $\hat{\mu}_a$ (Km)
- \blacktriangleright keep playing this arm until round T

 $A_{t+1} = \hat{a}$ for $t > Km$

⇒ EXPLORATION followed by EXPLOITATION

Given $m \in \{1, \ldots, T/K\}$,

- \blacktriangleright draw each arm m times
- ▶ compute the empirical best arm \hat{a} = argmax_a $\hat{\mu}_a$ (*Km*)
- \blacktriangleright keep playing this arm until round T $A_{t+1} = \hat{a}$ for $t > Km$

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_1 > \mu_2$, $\Delta := \mu_1 - \mu_2$.

$$
\mathcal{R}_{\nu}(\text{ETC}, T) = \Delta \mathbb{E}[N_2(T)]
$$

= $\Delta \mathbb{E}[m + (T - 2m)\mathbb{1} (\hat{a} = 2)]$
 $\leq \Delta m + (\Delta T) \times \mathbb{P}(\hat{\mu}_{2,m} \geq \hat{\mu}_{1,m})$

 $\hat{\mu}_{a,m}$: empirical mean of the first m observations from arm a

Given $m \in \{1, \ldots, T/K\}$,

- \blacktriangleright draw each arm m times
- ▶ compute the empirical best arm \hat{a} = argmax_a $\hat{\mu}_a$ (*Km*)
- \blacktriangleright keep playing this arm until round T

 $A_{t+1} = \hat{a}$ for $t > Km$

 \Rightarrow EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_1 > \mu_2$, $\Delta := \mu_1 - \mu_2$.

$$
\mathcal{R}_{\nu}(\text{ETC}, T) = \Delta \mathbb{E}[N_2(T)]
$$

= $\Delta \mathbb{E}[m + (T - 2m)\mathbb{1} (\hat{a} = 2)]$
 $\leq \Delta m + (\Delta T) \times \mathbb{P}(\hat{\mu}_{2,m} \geq \hat{\mu}_{1,m})$

 $\hat{\mu}_{a,m}$: empirical mean of the first m observations from arm a \rightarrow requires a concentration inequality

Intermezzo : Concentration Inequalities

Sub-Gaussian random variables : Z is σ^2 -subGaussian if

$$
\mathbb{E}[Z] = \mu \text{ and } \mathbb{E}\left[e^{\lambda(Z-\mu)}\right] \le e^{\frac{\lambda^2 \sigma^2}{2}}.
$$
 (1)

Hoeffding inequality

 Z_i i.i.d. satisfying (1) . For all $s\geq 1$

$$
\mathbb{P}\left(\frac{Z_1+\cdots+Z_s}{s}\geq \mu+x\right)\leq e^{-\frac{sx^2}{2\sigma^2}}
$$

Proof : Cramér-Chernoff method

► ν_a bounded in $[a, b] : (b - a)^2/4$ sub-Gaussian (Hoeffding's lemma) $\triangleright \nu_a = \mathcal{N}(\mu_a, \sigma^2) : \sigma^2$ sub-Gaussian

Intermezzo : Concentration Inequalities

Sub-Gaussian random variables : Z is σ^2 -subGaussian if

$$
\mathbb{E}[Z] = \mu \text{ and } \mathbb{E}\left[e^{\lambda(Z-\mu)}\right] \le e^{\frac{\lambda^2 \sigma^2}{2}}.
$$
 (1)

Hoeffding inequality

 Z_i i.i.d. satisfying (1) . For all $s\geq 1$

$$
\mathbb{P}\left(\frac{Z_1+\cdots+Z_s}{s}\leq \mu-x\right)\leq e^{-\frac{sx^2}{2\sigma^2}}
$$

Proof : Cramér-Chernoff method

► ν_a bounded in $[a, b] : (b - a)^2/4$ sub-Gaussian (Hoeffding's lemma) $\triangleright \nu_a = \mathcal{N}(\mu_a, \sigma^2) : \sigma^2$ sub-Gaussian

Given $m \in \{1, \ldots, T/K\}$,

- \blacktriangleright draw each arm m times
- ▶ compute the empirical best arm \hat{a} = argmax, $\hat{\mu}_a$ (Km)
- \blacktriangleright keep playing this arm until round T $A_{t+1} = \hat{a}$ for $t > Km$

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_1 > \mu_2$, $\Delta := \mu_1 - \mu_2$.

Assumption : ν_1, ν_2 are bounded in [0, 1].

$$
\mathcal{R}_{\nu}(\mathcal{T}) = \Delta \mathbb{E}[N_2(\mathcal{T})] \n= \Delta \mathbb{E}[m + (\mathcal{T} - 2m)\mathbb{1} (\hat{a} = 2)] \n\leq \Delta m + (\Delta \mathcal{T}) \times \mathbb{P}(\hat{\mu}_{2,m} \geq \hat{\mu}_{1,m})
$$

 $\hat{\mu}_{a,m}$: empirical mean of the first m observations from arm a \rightarrow Hoeffding's inequality

Given $m \in \{1, \ldots, T/K\}$,

- \blacktriangleright draw each arm m times
- ▶ compute the empirical best arm \hat{a} = argmax, $\hat{\mu}_a$ (Km)
- \blacktriangleright keep playing this arm until round T $A_{t+1} = \hat{a}$ for $t > Km$

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_1 > \mu_2$, $\Delta := \mu_1 - \mu_2$.

Assumption : ν_1, ν_2 are bounded in [0, 1].

$$
\mathcal{R}_{\nu}(\mathcal{T}) = \Delta \mathbb{E}[N_2(\mathcal{T})]
$$

= $\Delta \mathbb{E}[m + (\mathcal{T} - 2m)\mathbb{1}(\hat{a} = 2)]$
 $\leq \Delta m + (\Delta \mathcal{T}) \times \exp(-m\Delta^2/2)$

 $\hat{\mu}_{a,m}$: empirical mean of the first m observations from arm a \rightarrow Hoeffding's inequality

Given $m \in \{1, \ldots, T/K\}$,

- \blacktriangleright draw each arm m times
- ▶ compute the empirical best arm \hat{a} = argmax, $\hat{\mu}_a$ (Km)
- keep playing this arm until round T $A_{t+1} = \hat{a}$ for $t > Km$

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_1 > \mu_2$, $\Delta := \mu_1 - \mu_2$.

Assumption : ν_1, ν_2 are bounded in [0, 1]. For $m = \frac{2}{\Delta^2} \log \left(\frac{T \Delta^2}{2} \right)$, $\mathcal{R}_{\nu}(\text{ETC},\mathcal{T}) \leq \frac{2}{\Delta}$ ∆ \int log $\left(\frac{T\Delta^2}{2}\right)$ 2 $\Big\} + 1 \Big]$.

Given $m \in \{1, \ldots, T/K\}$,

- \blacktriangleright draw each arm m times
- ▶ compute the empirical best arm \hat{a} = argmax, $\hat{\mu}_a$ (Km)
- \blacktriangleright keep playing this arm until round T $A_{t+1} = \hat{a}$ for $t > Km$

⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_1 > \mu_2$, $\Delta := \mu_1 - \mu_2$.

Assumption : ν_1, ν_2 are bounded in [0, 1].

For
$$
m = \frac{2}{\Delta^2} \log \left(\frac{T \Delta^2}{2} \right)
$$
,
\n
$$
\mathcal{R}_{\nu}(\text{ETC}, \mathcal{T}) \leq \frac{2}{\Delta} \left[\log \left(\frac{\mathcal{T} \Delta^2}{2} \right) + 1 \right]
$$
\n+ logarithmic regret!

 $-$ requires the knowledge of T and Δ

.

Outline

1 [Performance measure and first strategies](#page-7-0)

2 [Mixing Exploration and Exploitation](#page-22-0) [Upper Confidence Bound algorithms](#page-25-0)

3 [Bayesian bandit algorithms](#page-47-0) ■ [Thompson Sampling](#page-52-0)

A simple strategy : ϵ -greedy

The ϵ -greedy rule [\[Sutton and Barto, 2018\]](#page-59-2) is the simplest way to alternate exploration and exploitation.

ϵ -greedy strategy

At round t,

 \blacktriangleright with probability ϵ

$$
\mathcal{A}_t \sim \mathcal{U}(\{1,\ldots,K\})
$$

 \triangleright with probability $1 - \epsilon$

$$
A_t = \underset{a=1,\ldots,K}{\operatorname{argmax}} \hat{\mu}_a(t).
$$

 \rightarrow Linear regret : \mathcal{R}_{ν} (ϵ -greedy, $\mathcal{T}) \geq \epsilon \frac{\mathcal{K}-1}{\mathcal{K}} \Delta_{\min} \mathcal{T}$.

$$
\Delta_{\min}=\min_{a:\mu_a<\mu_\star}\Delta_a
$$

A simple strategy : ϵ -greedy

A simple fix :

ϵ_t -greedy strategy

At round t,

► with probability
$$
\epsilon_t := \min\left(1, \frac{K}{d^2t}\right)
$$

$$
A_t \sim \mathcal{U}(\{1,\ldots,K\})
$$

 \triangleright with probability $1 - \epsilon_t$ $A_t = \operatorname*{argmax}_{a=1,\ldots,K} \hat{\mu}_a(t-1).$

Theorem [\[Auer, 2002\]](#page-57-0)

$$
\text{If } 0 < d \leq \Delta_{\min}, \, \mathcal{R}_{\nu} \left(\epsilon_t\text{-greedy}, \, \mathcal{T} \right) = O\left(\tfrac{K \log(\mathcal{T})}{d^2} \right).
$$

 \rightarrow requires the knowledge of a lower bound on Δ_{\min} ...

Outline

1 [Performance measure and first strategies](#page-7-0)

2 [Mixing Exploration and Exploitation](#page-22-0) [Upper Confidence Bound algorithms](#page-25-0)

3 [Bayesian bandit algorithms](#page-47-0) ■ [Thompson Sampling](#page-52-0)

The optimism principle

Step 1 : construct a set of statistically plausible models

 \triangleright For each arm a, build a confidence interval on the mean μ_{α} :

 $\mathcal{I}_a(t) = [LCB_a(t), UCB_a(t)]$

 $LCB =$ Lower Confidence Bound $UCB = **Upper Confidence Bound**$

Figure – Confidence intervals on the means after t rounds

The optimism principle

Step 2 : act as if the best possible model were the true model (optimism in face of uncertainty)

Figure – Confidence intervals on the means after t rounds Optimistic bandit model $=$ $\arg\!\max$ $\mu{\in}\mathcal{C}(t)$ max μ_a
 $=1,...,K$

 \blacktriangleright That is, select

$$
A_{t+1} = \underset{a=1,\ldots,K}{\operatorname{argmax}} \ \mathrm{UCB}_a(t).
$$

We need $UCB_a(t)$ such that

$$
\mathbb{P}\left(\mu_a \leq \mathrm{UCB}_a(t)\right) \gtrsim 1 - t^{-1}.
$$

 \rightarrow tool : concentration inequalities

Example : rewards are σ^2 sub-Gaussian

Hoeffding inequality, reloaded

 Z_i i.i.d. satisfying [\(1\)](#page-16-0). For all $s\geq 1$

$$
\mathbb{P}\left(\frac{Z_1+\cdots+Z_s}{s}<\mu-x\right)\leq e^{-\frac{s x^2}{2\sigma^2}}
$$

We need $UCB_a(t)$ such that

$$
\mathbb{P}\left(\mu_a \leq \mathrm{UCB}_a(t)\right) \gtrsim 1 - t^{-1}.
$$

 \rightarrow tool : concentration inequalities

Example : rewards are σ^2 sub-Gaussian

Hoeffding inequality, reloaded

 Z_i i.i.d. satisfying (1) . For all $s\geq 1$

$$
\mathbb{P}\left(\frac{Z_1+\cdots+Z_s}{s}<\mu-x\right)\leq e^{-\frac{sx^2}{2\sigma^2}}
$$

 \bigwedge Cannot be used directly in a bandit model as the number of observations from each arm is random !

 $\blacktriangleright N_a(t) = \sum_{s=1}^t \mathbb{1}_{(A_s = a)}$ number of selections of a after t rounds $\hat{\mu}_{a,s} = \frac{1}{s} \sum_{k=1}^{s} Y_{a,k}$ average of the first s observations from arm a $\hat{\mu}_a(t) = \hat{\mu}_{a,N_a(t)}$ empirical estimate of μ_a after t rounds

 $\blacktriangleright N_a(t) = \sum_{s=1}^t \mathbb{1}_{(A_s = a)}$ number of selections of a after t rounds $\hat{\mu}_{a,s} = \frac{1}{s} \sum_{k=1}^{s} Y_{a,k}$ average of the first s observations from arm a $\hat{\mu}_a(t) = \hat{\mu}_{a,N_a(t)}$ empirical estimate of μ_a after t rounds

Hoeffding inequality $+$ union bound

$$
\mathbb{P}\left(\mu_{\sf a} \leq \hat{\mu}_{\sf a}(t) + \sigma \sqrt{\frac{\beta \log(t)}{N_{\sf a}(t)}} \right) \geq 1 - \frac{1}{t^{\frac{\beta}{2}-1}}
$$

Proof.

$$
\mathbb{P}\left(\mu_a > \hat{\mu}_a(t) + \sigma \sqrt{\frac{\beta \log(t)}{N_a(t)}}\right) \leq \mathbb{P}\left(\exists s \leq t : \mu_a > \hat{\mu}_{a,s} + \sigma \sqrt{\frac{\beta \log(t)}{s}}\right) \leq \sum_{s=1}^t \mathbb{P}\left(\hat{\mu}_{a,s} < \mu_a - \sigma \sqrt{\frac{\beta \log(t)}{s}}\right) \leq \sum_{s=1}^t \frac{1}{t^{\beta/2}} = \frac{1}{t^{\beta/2-1}}.
$$

A first UCB algorithm

 $UCB(\alpha)$ selects $A_{t+1} = \text{argmax}$, $UCB_a(t)$ where

▶ popularized by [\[Auer, 2002\]](#page-57-0) for bounded rewards : UCB1, for $\alpha = 2$

 \blacktriangleright the analysis was UCB(α) was further refined to hold for $\alpha > 1/2$, still for bounded rewards [\[Bubeck, 2010\]](#page-0-0)

A UCB algorithm in action

Regret of UCB (α)

Context : σ^2 sub-Gaussian rewards

$$
\mathrm{UCB}_a(t) = \hat{\mu}_a(t) + \sqrt{\frac{2\sigma^2(\log(t) + c \log \log(t))}{N_a(t)}}
$$

Theorem [Cappé et al.'13]

For $c > 3$, the UCB algorithm associated to the above index satisfy

$$
\mathbb{E}[N_a(\mathcal{T})] \leq \frac{2\sigma^2}{(\mu_\star - \mu_a)^2} \log(\mathcal{T}) + C_\mu \sqrt{\log(\mathcal{T})}.
$$

if the rewards distributions are σ^2 sub-Gaussian.

Regret of UCB (α)

Context : σ^2 sub-Gaussian rewards

$$
\mathrm{UCB}_a(t) = \hat{\mu}_a(t) + \sqrt{\frac{2\sigma^2(\log(t) + c \log \log(t))}{N_a(t)}}
$$

Theorem [Cappé et al.'13]

For $c > 3$, the UCB algorithm associated to the above index satisfy

$$
\mathbb{E}[N_a(\mathcal{T})] \leq \frac{2\sigma^2}{(\mu_\star - \mu_a)^2} \log(\mathcal{T}) + C_\mu \sqrt{\log(\mathcal{T})}.
$$

if the rewards distributions are σ^2 sub-Gaussian.

regret bound for Gaussian distribution with variance σ^2 :

$$
\mathcal{R}_{\nu}(\mathrm{UCB}(\alpha),\,\mathcal{T})=2\sigma^2\left(\sum_{s:\mu_s<\mu_\star}\frac{1}{\Delta_s}\right)\log(\mathcal{T})+\mathcal{O}(\sqrt{\log(\mathcal{T})})
$$
 for $\alpha=2\sigma^2.$

Regret of UCB (α)

Context : σ^2 sub-Gaussian rewards

$$
\mathrm{UCB}_a(t) = \hat{\mu}_a(t) + \sqrt{\frac{2\sigma^2(\log(t) + c \log \log(t))}{N_a(t)}}
$$

Theorem [Cappé et al.'13]

For $c > 3$, the UCB algorithm associated to the above index satisfy

$$
\mathbb{E}[N_a(\mathcal{T})] \leq \frac{2\sigma^2}{(\mu_\star - \mu_a)^2} \log(\mathcal{T}) + C_\mu \sqrt{\log(\mathcal{T})}.
$$

if the rewards distributions are σ^2 sub-Gaussian.

 \triangleright regret bound for distributions that are bounded in $[0, 1]$:

$$
\mathcal{R}_{\nu}(\mathrm{UCB}(\alpha),\mathcal{T})=\frac{1}{2}\left(\sum_{a:\mu_a<\mu_{\star}}\frac{1}{\Delta_a}\right)\log(\mathcal{T})+\mathcal{O}(\sqrt{\log(\mathcal{T})})
$$
 for $\alpha=1/2$.

Is $UCB(\alpha)$ the best possible algorithm?

Context : a parametric bandit model where each arm is parameterized by its mean $\nu = (\nu_{\mu_1}, \ldots, \nu_{\mu_K})$, $\mu_a \in \mathcal{I}$.

$$
\nu \leftrightarrow \mu = (\mu_1, \ldots, \mu_K)
$$

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

$$
\text{kl}(\mu,\mu') := \text{KL}(\nu_{\mu},\nu_{\mu'}) = \mathbb{E}_{X \sim \nu_{\mu}} \left[\log \frac{d \nu_{\mu}}{d \nu_{\mu'}}(X) \right]
$$

Lower bound [\[Lai et al., 1985\]](#page-58-1)

For uniformly good algorithm, $\mu_a < \mu_\star \Rightarrow \liminf_{T \to \infty}$ $\mathbb{E}_{\mu}[N_a(\tau)]$ $\frac{\left[N_a(\mathcal{T}) \right]}{\log \mathcal{T}} \geq \frac{1}{\textnormal{kl}(\mu_a)}$ $\text{kl}(\mu_{\textsf{a}}, \mu_{\star})$

Is $UCB(\alpha)$ the best possible algorithm?

Context : a parametric bandit model where each arm is parameterized by its mean $\nu = (\nu_{\mu_1}, \ldots, \nu_{\mu_K})$, $\mu_a \in \mathcal{I}$.

$$
\nu \leftrightarrow \mu = (\mu_1, \ldots, \mu_K)
$$

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

$$
kl(\mu, \mu') := \frac{(\mu - \mu')^2}{2\sigma^2} \quad \text{(Gaussian bandits)}
$$

Lower bound [\[Lai et al., 1985\]](#page-58-1)

For uniformly good algorithm,

$$
\mu_a < \mu_\star \Rightarrow \liminf_{T \to \infty} \frac{\mathbb{E}_{\mu}[N_a(T)]}{\log T} \ge \frac{1}{\text{kl}(\mu_a, \mu_\star)}
$$

Is $UCB(\alpha)$ the best possible algorithm?

Context : a parametric bandit model where each arm is parameterized by its mean $\nu = (\nu_{\mu_1}, \ldots, \nu_{\mu_K}), \ \mu_a \in \mathcal{I}.$

$$
\nu \ \leftrightarrow \ \boldsymbol{\mu} = (\mu_1, \ldots, \mu_K)
$$

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

$$
kl(\mu, \mu') := \mu \log \left(\frac{\mu}{\mu'} \right) + (1 - \mu) \log \left(\frac{1 - \mu}{1 - \mu'} \right)
$$
 (Bernoulli bandits)

Lower bound [\[Lai et al., 1985\]](#page-58-1)

For uniformly good algorithm, $\mu_a < \mu_\star \Rightarrow \liminf_{T \to \infty}$ $\mathbb{E}_{\mu}[N_a(\tau)]$ $\frac{\left[N_a(\mathcal{T}) \right]}{\log \mathcal{T}} \geq \frac{1}{\textnormal{kl}(\mu_a)}$ $\text{kl}(\mu_{\textsf{a}}, \mu_{\star})$

For Gaussian bandits with variance σ^2 ,

▶ Upper bound for UCB($2\sigma^2$) :

$$
\mathcal{R}_{\nu}({\rm UCB},\,\boldsymbol{\mathcal{T}})\lesssim\sum_{\boldsymbol{a}:\mu_{\boldsymbol{a}}<\mu_{\star}}\frac{2\sigma^2}{(\mu^{\star}-\mu_{\boldsymbol{a}})}\log(\,\boldsymbol{\mathcal{T}})
$$

Lower bound : for large values of T ,

$$
\mathcal{R}_{\nu}(\mathcal{A},\,\mathcal{T}) \gtrsim \sum_{\substack{ \bm{a}:\mu_{\bm{a}}<\mu_{\bm{\star}} }} \frac{(\mu_{\bm{\star}}-\mu_{\bm{a}})}{\mathrm{kl}(\mu_{\bm{a}},\mu_{\bm{\star}})} \log{(\,\mathcal{T})}
$$

For Gaussian bandits with variance σ^2 ,

▶ Upper bound for $UCB(2\sigma^2)$:

$$
\mathcal{R}_{\nu}({\rm UCB},\,\boldsymbol{\mathcal{T}})\lesssim\sum_{s:\mu_{s}<\mu_{\star}}\frac{2\sigma^{2}}{(\mu^{\star}-\mu_{\boldsymbol{a}})}\log(\,\boldsymbol{\mathcal{T}})
$$

Lower bound : for large values of T ,

$$
\mathcal{R}_{\nu}(\mathcal{A}, \mathcal{T}) \gtrsim \sum_{\mathsf{a}:\mu_\mathsf{a}<\mu_\star} \frac{2\sigma^2}{(\mu_\star-\mu_{\scriptscriptstyle \mathsf{a}})}\log\left(\mathcal{T}\right)
$$

 \rightarrow UCB is asymptotically optimal for Gaussian bandits !

For Bernoulli bandits (that are bounded in [0, 1]),

 \blacktriangleright Upper bound for UCB(1/2) :

$$
\mathcal{R}_{\nu}({\rm UCB},\,\mathcal{T})\lesssim \sum_{\substack{ \bm{a}:\mu_{\bm{a}}<\mu_{\bm{\star}} }}\frac{1}{2(\mu^{\bm{\star}}-\mu_{\bm{a}})}\log(\mathcal{T})
$$

Lower bound : for large values of T ,

$$
\mathcal{R}_{\nu}(\mathcal{A},\,\mathcal{T}) \gtrsim \sum_{\substack{ \bm{a}:\mu_{\bm{a}}<\mu_{\bm{\star}} }}\frac{(\mu_{\bm{\star}}-\mu_{\bm{a}})}{\mathrm{kl}(\mu_{\bm{a}},\mu_{\bm{\star}})}\log{(\,\mathcal{T})}
$$

For Bernoulli bandits (that are bounded in [0, 1]),

 \blacktriangleright Upper bound for UCB(1/2) :

$$
\mathcal{R}_{\nu}({\rm UCB},\,\mathcal{T})\lesssim \sum_{\substack{ \bm{a}:\mu_{\bm{a}}<\mu_{\bm{\star}} }}\frac{1}{2(\mu^{\bm{\star}}-\mu_{\bm{a}})}\log(\mathcal{T})
$$

Lower bound : for large values of T ,

$$
\mathcal{R}_{\nu}(\mathcal{A}, \mathcal{T}) \gtrsim \sum_{\mathsf{a}:\mu_{\mathsf{a}} < \mu_{\star}} \frac{(\mu_{\star} - \mu_{\mathsf{a}})}{\mathrm{kl}(\mu_{\mathsf{a}}, \mu_{\star})} \log{(\mathcal{T})}
$$

For Bernoulli bandits (that are bounded in [0, 1]),

 \blacktriangleright Upper bound for UCB(1/2) :

$$
\mathcal{R}_{\nu}({\rm UCB},\,\mathcal{T})\lesssim \sum_{\substack{ \bm{a}:\mu_{\bm{a}}<\mu_{\bm{\star}} }}\frac{1}{2(\mu^{\bm{\star}}-\mu_{\bm{a}})}\log(\mathcal{T})
$$

Lower bound : for large values of T ,

$$
\mathcal{R}_{\nu}(\mathcal{A},\,\mathcal{T})\gtrsim\sum_{\mathbf{a}:\mu_{\mathbf{a}}<\mu_{\mathbf{x}}}\frac{(\mu_{\star}-\mu_{\mathbf{a}})}{\mathrm{kl}(\mu_{\mathbf{a}},\mu_{\star})}\log\left(\mathcal{T}\right)
$$

→ UCB is not asymptotically optimal for Bernoulli bandits...

Pinsker's inequality : $\text{kl}(\mu, \mu') \geq 2(\mu - \mu')^2$

The kl-UCB algorithm

Exploits the KL-divergence in the lower bound !

UCB_a(t) = max
$$
\left\{ q \in [0,1]: k! (\hat{\mu}_a(t), q) \le \frac{\log(t)}{N_a(t)} \right\}
$$
.

$$
\mathbb{P}(\text{UCB}_a(t) > \mu_a) \gtrsim 1 - \frac{1}{t \log(t)}.
$$

An asymptotically optimal algorithm

kl-UCB selects $A_{t+1} = \arg \max_a \text{UCB}_a(t)$ with

$$
\mathrm{UCB}_a(t) = \max\left\{q \in [0,1]: \mathrm{kl}\left(\hat{\mu}_a(t), q\right) \leq \frac{\log(t) + c \log \log(t)}{N_a(t)}\right\}.
$$

Theorem [Cappé et al., 2013]

If $c > 3$, for every arm such that $\mu_a < \mu_{\star}$,

$$
\mathbb{E}_{\boldsymbol{\mu}}[N_{\mathsf{a}}(\mathcal{T})]\leq \frac{1}{\mathrm{kl}(\mu_{\mathsf{a}}, \mu_{\star})}\log(\mathcal{T})+C_{\boldsymbol{\mu}}\sqrt{\log(\mathcal{T})}.
$$

 \triangleright kl-UCB is asymptotically optimal for Bernoulli bandits :

$$
\mathcal{R}_{\boldsymbol{\mu}}(\text{kl-UCB},\,\mathcal{T})\simeq \left(\sum_{x:\mu_a<\mu_{\star}}\frac{\mu_{\star}-\mu_a}{\text{kl}(\mu_a,\,\mu_{\star})}\right)\text{log}(\,\mathcal{T}).
$$

Outline

1 [Performance measure and first strategies](#page-7-0)

2 [Mixing Exploration and Exploitation](#page-22-0) [Upper Confidence Bound algorithms](#page-25-0)

3 [Bayesian bandit algorithms](#page-47-0) ■ [Thompson Sampling](#page-52-0)

Frequentist versus Bayesian bandit

Context : parametric bandit model $\nu_{\boldsymbol{\mu}} = (\nu_{\mu_1}, \dots, \nu_{\mu_K}).$

 \blacktriangleright Two probabilistic models

where $(Y_{a,s})$ is the sequence of successive rewards obtained from arm a

Frequentist and Bayesian algorithms

▶ Two types of tools to build bandit algorithms :

Example : Bernoulli bandits

Bernoulli bandit model $\mu = (\mu_1, \dots, \mu_K)$

Bayesian view : μ_1, \ldots, μ_K are random variables prior distribution : $\mu_a \sim \mathcal{U}([0,1])$

→ posterior distribution :

$$
\pi_a(t) = \mathcal{L}(\mu_a | R_1, \dots, R_t)
$$

= Beta $\left(\frac{S_a(t)}{t} + 1, \underbrace{N_a(t) - S_a(t)}_{\text{#ones}} + 1\right)$

$$
S_a(t) = \sum_{s=1}^t R_s \mathbb{1}_{\{A_s = a\}} \text{ sum of the rewards.}
$$

Bayesian algorithm

A Bayesian bandit algorithm exploits the posterior distributions of the means to decide which arm to select.

Outline

1 [Performance measure and first strategies](#page-7-0)

2 [Mixing Exploration and Exploitation](#page-22-0) [Upper Confidence Bound algorithms](#page-25-0)

3 [Bayesian bandit algorithms](#page-47-0) **[Thompson Sampling](#page-52-0)**

Thompson Sampling

A very old idea : [\[Thompson, 1933\]](#page-59-0).

Two equivalent interpretations :

- ▶ "select an arm at random according to its probability of being the best"
- ▶ "draw a possible bandit model from the posterior distribution and act optimally in this sampled model" \neq optimistic

Thompson Sampling : a randomized Bayesian algorithm

$$
\begin{cases} \forall a \in \{1..K\}, & \theta_a(t) \sim \pi_a(t) \\ A_{t+1} = \underset{a=1...K}{\text{argmax }} \theta_a(t). \end{cases}
$$

Thompson Sampling is asymptotically optimal

Problem-dependent regret

$$
\forall \epsilon >0, \quad \mathbb{E}_{\bm \mu} [N_{\bm a}(\mathcal{T})] \leq (1+\epsilon) \frac{1}{\mathrm{kl}(\mu_{\bm a}, \mu_{\star})} \log (\mathcal{T}) + o_{\mu,\epsilon}(\log (\mathcal{T})).
$$

This results holds :

- \triangleright for Bernoulli bandits, with a uniform prior [\[Kaufmann et al., 2012,](#page-58-2) [Agrawal and Goyal, 2013\]](#page-57-3)
- ▶ for Gaussian bandits, with Gaussian prior [\[Agrawal and Goyal, 2017\]](#page-57-4)
- \blacktriangleright for exponential family bandits, with Jeffrey's prior [\[Korda et al., 2013\]](#page-58-3)

Bayesian versus Frequentist algorithms

▶ Regret up to $T = 2000$ (average over $N = 200$ runs) as a function of T (resp. $log(T)$)

 $\mu = [0.1 \ 0.15 \ 0.2 \ 0.25]$

Summary

Several ways to solve the exploration/exploitation trade-off, mostly

- \triangleright the optimism-in-face-of-uncertainty principle (UCB)
- ▶ posterior sampling (Thompson Sampling)

What do they need ?

- \triangleright UCB : the capacity to build a confidence region for the unknown model parameters and compute the best possible model
- ▶ Thompson Sampling : the ability to define a prior distribution and sample from the corresponding posterior distribution
- \rightarrow these principles can be extended to more challenging bandit problems and to reinforcement learning

Agrawal, S. and Goyal, N. (2013).

Further optimal regret bounds for thompson sampling.

In Sixteenth International Conference on Artificial Intelligence and Statistics (AISTATS).


```
Agrawal, S. and Goyal, N. (2017).
Near-optimal regret bounds for thompson sampling.
Journal of the ACM (JACM), 64(5) :1-24.
```


```
Auer, P. (2002).
```
Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning Research, 3(Nov) :397-422.

Bubeck, S. (2010).

Jeux de bandits et fondations du clustering.

Cappé, O., Garivier, A., Maillard, O.-A., Munos, R., and Stoltz, G. (2013). Kullback-leibler upper confidence bounds for optimal sequential allocation. The Annals of Statistics, pages 1516–1541.

Garivier, A. and Cappé, O. (2011).

The kl-ucb algorithm for bounded stochastic bandits and beyond.

In Proceedings of the 24th annual conference on learning theory, pages 359–376. JMLR Workshop and Conference Proceedings.

Kaufmann, E., Korda, N., and Munos, R. (2012).

Thompson sampling : An asymptotically optimal finite-time analysis. In International conference on algorithmic learning theory, pages 199–213. Springer.

Korda, N., Kaufmann, E., and Munos, R. (2013). Thompson sampling for 1-dimensional exponential family bandits. Advances in neural information processing systems, 26.

Lai, T. L., Robbins, H., et al. (1985). Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1) :4–22.

Lattimore, T. and Szepesvári, C. (2020). Bandit algorithms.

Cambridge University Press.

Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web, pages 661–670.

Robbins, H. (1952).

Some aspects of the sequential design of experiments.

Bulletin of the American Mathematical Society, 58(5) :527–535.

Sutton, R. S. and Barto, A. G. (2018).

Reinforcement learning : An introduction.

MIT press.

Thompson, W. R. (1933).

On the likelihood that one unknown probability exceeds another in view of the evidence of two samples.

Biometrika, 25(3-4) :285–294.

TOR LATTIMORE CSABA SZEPESVÁRI

[The Bandit Book](https://tor-lattimore.com/downloads/book/book.pdf)

by [Lattimore and Szepesvári, 2020]