Sequential Learning Lecture 4.5 : Summary of the first four courses

Rémy Degenne (remy.degenne@inria.fr)

Centrale Lille, 2024/2025

Markov Decision Process

A MDP is parameterized by a tuple (S, A, R, P) where

- \triangleright S is the state space
- \blacktriangleright A is the action space
- \triangleright $R = (\nu_{(s,a)})_{(s,a)\in S\times A}$ where $\nu_{(s,a)} \in \Delta(\mathbb{R})$ is the reward distribution for the state-action pair (s, a)
- \blacktriangleright $P = (p(\cdot|s, a))_{(s, a) \in S \times A}$ where $p(\cdot|s, a) \in \Delta(S)$ is the transition kernel associated to the state-action pair (s, a)

In each (discrete) decision time $t = 1, 2, \ldots$, a learning agent

- \triangleright selects an action a_t based on his current state s_t (or possibly all the previous observations),
- ▶ gets a reward $r_t \sim \nu_{(s_t, a_t)}$
- ▶ makes a transition to a new state $s_{t+1} \sim p(\cdot | s_t, a_t)$

Markov Decision Process

A MDP is parameterized by a tuple (S, A, R, P) where

- \triangleright S is the state space
- \blacktriangleright A is the action space
- \triangleright $R = (\nu_{(s,a)})_{(s,a)\in S\times A}$ where $\nu_{(s,a)} \in \Delta(\mathbb{R})$ is the reward distribution for the state-action pair (s, a)
- \blacktriangleright $P = (p(\cdot|s, a))_{(s, a) \in S \times A}$ where $p(\cdot|s, a) \in \Delta(S)$ is the transition kernel associated to the state-action pair (s, a)

Goal : (made more precise later) select actions so as to maximize some notion of expected cumulated rewards

Mean reward of action a in state s

$$
r(s,a) = \mathbb{E}_{R \sim \nu_{(s,a)}}[R]
$$

Different Markov Decision Problems

Overall goal: learn the optimal policy π^* associated to some MDP parameterized by $r(s, a)$ and $p(\cdot|s, a)$ for $(s, a) \in S \times A$.

Different contexts :

- **9** Small state space S , known dynamics
- **2** Small state space S , unknown dynamics
- \bullet Large state space S, known dynamics
- \bullet Large state space S, unknown dynamics

Value and policy

Value of a policy :

$$
V^{\pi}(s) = \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \middle| s_1 = s \right] \text{ and}
$$

\n
$$
Q^{\pi}(s, a) = \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \middle| s_1 = s, a_1 = a \right].
$$

\n
$$
V^*(s) = V^{\pi^*}(s) = \max_{\pi} V^{\pi}(s) \text{ and}
$$

\n
$$
Q^*(s, a) = Q^{\pi^*}(s, a) = \max_{\pi} Q^{\pi}(s, a).
$$

\n
$$
V^{\pi} = \mathbb{E}_{a \sim \pi(s)}[Q^{\pi}(s, a)].
$$

Greedy policy :

▶ greedy(V) = $\operatorname{argmax}_{a \in A} \left(r(s, a) + \gamma \mathbb{E}_{s' \sim p(\cdot | s, a)} \left[V(s') \right] \right)$ ▶ greedy(Q) = $\arg \max_{a \in A} Q(s, a)$ $\blacktriangleright \pi^* = \text{greedy}(V^*)$ and $\pi^* = \text{greedy}(Q^*)$.

Bellman equations and operators

The value of a policy satisfies a **Bellman equation**, written with the Bellman operator

$$
V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim p(\cdot | s, a)} \left[V(s') \right] \right],
$$

$$
V^{\pi} = T^{\pi} V^{\pi}.
$$

Similar equations and operators for Q^{π} , V^* , Q^* .

Properties of V^{π} and T^{π} :

 \blacktriangleright \mathcal{T}^{π} is a γ -contraction

 \blacktriangleright V^{π} is the unique fixed point

 $V_{n+1} = T^{\pi} V_n$ tends to V^{π} .

Similar properties for Q^{π} , V^* , Q^* .

Goals

Policy evaluation

```
Given a policy \pi, return V^{\pi} (or Q^{\pi})
```
Often : find a "good enough" approximation of V^{π} .

Finding the best policy

Find $\pi^* = \arg \max_{\pi} V^{\pi} = \arg \max_{\pi} Q^{\pi}$.

Property : there exists a deterministic π^* , given by $\pi^* = \text{greedy}(V^*)$ and $\pi^* = \text{greedy}(Q^*).$ Often : find a policy π which is "close enough" to π^* .

Small MDP, known dynamics

Solve the Bellman equation for policy evaluation : $V^{\pi} = (I - \gamma P)^{-1}r$.

Value iteration for policy evaluation or finding the best policy :

• **Iterate**
$$
V_{n+1} = T^{\pi}V_n
$$
 (resp. $V_{n+1} = T^*V_n$)

3 Stop when
$$
||V_{n+1} - T^T V_n||
$$
 is small

Then if we are iterating with T^* to find the best policy : return $\pi = \text{greedy}(V_n)$.

Policy iteration for finding the best policy :

- \bullet Use policy evaluation to find V^{π_n}
- **2** Perform policy improvement : $\pi_{n+1} = \text{greedy}(V^{\pi_n})$.

Both can also be performed with Q instead of V . (Advantages? Drawbacks ?)

Small MDP, unknown dynamics

Main ideas : Robbins-Monro estimation and temporal differences.

TD(0) for policy evaluation

$$
\triangleright \hat{V}(s_k) \leftarrow \hat{V}(s_k) + \alpha_{N(s_k)}(s_k)\delta(s_k) \text{ where } \\ \delta(s_k) = r_k + \gamma \hat{V}(s_{k+1}) - \hat{V}(s_k) \text{ and } (r_k, s_{k+1}) = \text{step}(s_k, \pi).
$$

Parallel Robbins-Monro on each state. \hat{V} converges to V^{π} (under suitable conditions on α , etc.).

Q-Learning for finding the best policy

$$
\blacktriangleright Q(s, a) \leftarrow Q(s, a) + \alpha_{N(s, a)}(s, a) (r + \gamma \max_b Q(s', b) - Q(s, a))
$$

where $(r, s') = \text{step}(s, a)$

$$
\blacktriangleright \text{ Return } Q, \pi = \text{greedy}(Q).
$$

Parallel Robbins-Monro on each state-action pair. Q converges to Q^* . Works for any behaviour policy, provided it explores enough.

Both are modified value iteration / policy iteration, with R-M and TD techniques to deal with unknown dynamics.
Rémy Degenne | Inria, CRIStAL - 8

Large MDP

Function approximation. Since $\mathcal{F}(\mathcal{S}, \mathbb{R})$ is too large, introduce a (parametric) set of functions \mathcal{F}_V and look for best V in \mathcal{F}_V . Ex : functions representable by a given neural network.

Policy evaluation

- ▶ Minimize $\text{MSVE}_{\nu}(V) = \mathbb{E}_{s \sim \nu} \left[\left(V^{\pi}(s) V(s) \right)^2 \right].$
- \blacktriangleright Use TD(0) semi-gradient. Converges to θ_{TD}
- \triangleright Or : estimate the solution directly with LSTD, using that $A\theta_{TD} = b$ for some A, b (linear approximation). Variant for $Q : LSTM-Q$.

Finding the best policy

- ▶ LSPI : policy iteration using LSTD-Q for policy evaluation
- \triangleright Fitted Q-iteration : value iteration for Q, with regression to estimate T [∗]Q from samples
- \blacktriangleright Approximate Q-learning : use semi-gradient updates for Q.

And more to come, not value-based.