Lecture 4.5 : Summary of the first four courses

Rémy Degenne
(remy.degenne@inria.fr)

rc M=
CRIrs C
i I— .

Centrale Lille, 2024 /2025

Markov Decision Process

A MDP is parameterized by a tuple (S, A, R, P) where
» S is the state space
» A is the action space

» R = ((s,5))(s,)esx.4 Where (s ;) € A(R) is the reward distribution
for the state-action pair (s, a)

» P =(p(-s,a))(s,a)esx.a Where p(-|s,a) € A(S) is the transition
kernel associated to the state-action pair (s, a)

In each (discrete) decision time t = 1,2,..., a learning agent
» selects an action a; based on his current state s;
(or possibly all the previous observations),
> gets a reward r; ~ 1/, 4,

> makes a transition to a new state sy1 ~ p(-|st, ar)

[Bellman 1957, Howard 1960, Blackwell 70s...]

Rémy Degenne | Inria, CRIStAL

Markov Decision Process

A MDP is parameterized by a tuple (S, A, R, P) where
» S is the state space
» A is the action space

» R = ((s,5))(s,a)esx.4 Where (s ;) € A(R) is the reward distribution
for the state-action pair (s, a)

» P =(p(-|s,a))(s,a)esx.a Where p(-|s,a) € A(S) is the transition
kernel associated to the state-action pair (s, a)

Goal : (made more precise later) select actions so as to maximize some
notion of expected cumulated rewards

Mean reward of action a in state s

r(s, a) =]ERNV(S,B)[R]

Rémy Degenne | Inria, CRIStAL

Different Markov Decision Problems

Overall goal : learn the optimal policy 7* associated to some MDP
parameterized by r(s, a) and p(:|s, a) for (s,a) € S x A.

Different contexts :
© Small state space S, known dynamics
@ Small state space S, unknown dynamics
© Large state space S, known dynamics

@ Large state space S, unknown dynamics

Rémy Degenne | Inria, CRIStAL

Value and policy

Value of a policy :
> V() =E" [> 72,7 | s1 =s] and
Q(s,a) =E" [27 tn|si=s,a1 =a].
> V*(s) = V”*(f) = max, V"(s) and
(Q™ (s,a) = max,; Q™ (s, a).
> VT =Ean(s)[Q7(s, a)].

QD

*
wn
L
|

Greedy policy :
> greedy(V) = argmax, 4 (r(s, a) + YEg np(.|s,a) [V(s’)])

> greedy(Q) = argmax,c 4 Q(s, a)
> 7 = greedy(V*) and 7* = greedy(Q*) .

Rémy Degenne | Inria, CRIStAL

Bellman equations and operators

The value of a policy satisfies a Bellman equation, written with the
Bellman operator

V7™ (s) = Ear(s) [r(s, a) +VEsmp(-1s,2) [V(s')]} ,
Vi =T7V".

Similar equations and operators for Q™, V*, Q*.

Properties of V™ and T™ :
» T7 is a y-contraction
» V7 is the unique fixed point
» Vo1 =T7"V, tends to V™.
Similar properties for Q™, V*, Q*.

Rémy Degenne | Inria, CRIStAL

Goals

Policy evaluation

Given a policy , return V™ (or Q™)

Often : find a “good enough” approximation of V™.

Finding the best policy

Find 7* = argmax, V™ = argmax, Q7.

Property : there exists a deterministic 7*, given by 7* = greedy(V*) and
7 = greedy(Q*).
Often : find a policy 7 which is “close enough” to 7*.

Rémy Degenne | Inria, CRIStAL

Small MDP, known dynamics

Solve the Bellman equation for policy evaluation : V™ = (I — yP)~1r.

Value iteration for policy evaluation or finding the best policy :
Q lterate V,p1 = T™V, (resp. Vi1 = T*V,)
@ Stop when ||V,41 — T™V,]|| is small

Then if we are iterating with T* to find the best policy : return
m = greedy(V,).

Policy iteration for finding the best policy :
@ Use policy evaluation to find V™

@ Perform policy improvement : 7,1 = greedy(V™).

Both can also be performed with Q instead of V. (Advantages?
Drawbacks ?)

Rémy Degenne | Inria, CRIStAL

Small MDP, unknown dynamics

Main ideas : Robbins-Monro estimation and temporal differences.

TD(0) for policy evaluation
> V(se) « V(sk) + an(s,)(sk)(sk) where
(S(Sk) = I+ 7\7(Sk+1) - V(Sk) and (rk75k+1) = step(sk,w).
Parallel Robbins-Monro on each state. V converges to V™ (under
suitable conditions on «, etc.).

Q-Learning for finding the best policy
> Q(s,a) < Q(s,a) + ans,a)(s;a) (r +ymax, Q(s’, b) — Q(s, a))
where (r,s’) = step(s, a)
> Return Q, 7 = greedy(Q).

Parallel Robbins-Monro on each state-action pair. @ converges to Q*.
Works for any behaviour policy, provided it explores enough.

Both are modified value iteration / policy iteration, with R-M and TD

techniques to deal with unknown dynamics.
Rémy Degenne| Inria, CRIStAL

Large MDP

Function approximation. Since 7(S,R) is too large, introduce a
(parametric) set of functions Fy and look for best V in Fy .
Ex : functions representable by a given neural network.

Policy evaluation
> Minimize MSVE, (V) = Eq., [(V7 (s) — V(s))z]
» Use TD(0) semi-gradient. Converges to 01p

» Or : estimate the solution directly with LSTD, using that Afrp = b
for some A, b (linear approximation). Variant for Q@ : LSTD-Q.

Finding the best policy
» LSPI : policy iteration using LSTD-Q for policy evaluation

» Fitted Q-iteration : value iteration for @, with regression to estimate
T*Q from samples

» Approximate Q-learning : use semi-gradient updates for Q.
And more to come, not value-based.

Rémy Degenne | Inria, CRIStAL

