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Markov Decision Process

A MDP is parameterized by a tuple (S,A,R,P) where
▶ S is the state space

▶ A is the action space

▶ R = (ν(s,a))(s,a)∈S×A where ν(s,a) ∈ ∆(R) is the reward distribution
for the state-action pair (s, a)

▶ P = (p(·|s, a))(s,a)∈S×A where p(·|s, a) ∈ ∆(S) is the transition
kernel associated to the state-action pair (s, a)

In each (discrete) decision time t = 1, 2, . . . , a learning agent

▶ selects an action at based on his current state st
(or possibly all the previous observations),

▶ gets a reward rt ∼ ν(st ,at)

▶ makes a transition to a new state st+1 ∼ p(·|st , at)

[Bellman 1957, Howard 1960, Blackwell 70s...]
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Markov Decision Process

A MDP is parameterized by a tuple (S,A,R,P) where
▶ S is the state space

▶ A is the action space

▶ R = (ν(s,a))(s,a)∈S×A where ν(s,a) ∈ ∆(R) is the reward distribution
for the state-action pair (s, a)

▶ P = (p(·|s, a))(s,a)∈S×A where p(·|s, a) ∈ ∆(S) is the transition
kernel associated to the state-action pair (s, a)

Goal : (made more precise later) select actions so as to maximize some
notion of expected cumulated rewards

Mean reward of action a in state s

r(s, a) = ER∼ν(s,a)
[R]
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Different Markov Decision Problems

Overall goal : learn the optimal policy π⋆ associated to some MDP
parameterized by r(s, a) and p(·|s, a) for (s, a) ∈ S ×A.

Different contexts :

1 Small state space S, known dynamics

2 Small state space S, unknown dynamics

3 Large state space S, known dynamics

4 Large state space S, unknown dynamics
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Value and policy

Value of a policy :

▶ V π(s) = Eπ
[∑∞

t=1 γ
t−1rt

∣∣ s1 = s
]
and

Qπ(s, a) = Eπ
[∑∞

t=1 γ
t−1rt

∣∣ s1 = s, a1 = a
]
.

▶ V ∗(s) = V π∗
(s) = maxπ V

π(s) and
Q∗(s, a) = Qπ∗

(s, a) = maxπ Q
π(s, a).

▶ V π = Ea∼π(s)[Q
π(s, a)].

Greedy policy :

▶ greedy(V ) = argmaxa∈A

(
r(s, a) + γEs′∼p(·|s,a) [V (s ′)]

)
▶ greedy(Q) = argmaxa∈A Q(s, a)

▶ π∗ = greedy(V ∗) and π∗ = greedy(Q∗) .
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Bellman equations and operators

The value of a policy satisfies a Bellman equation, written with the
Bellman operator

V π(s) = Ea∼π(s)

[
r(s, a) + γEs′∼p(·|s,a) [V (s ′)]

]
,

V π = TπV π .

Similar equations and operators for Qπ,V ∗,Q∗.

Properties of V π and Tπ :

▶ Tπ is a γ-contraction

▶ V π is the unique fixed point

▶ Vn+1 = TπVn tends to V π.

Similar properties for Qπ,V ∗,Q∗.
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Goals

Policy evaluation

Given a policy π, return V π (or Qπ)

Often : find a “good enough” approximation of V π.

Finding the best policy

Find π∗ = argmaxπ V
π = argmaxπ Q

π.

Property : there exists a deterministic π∗, given by π∗ = greedy(V ∗) and
π∗ = greedy(Q∗).
Often : find a policy π which is “close enough” to π∗.
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Small MDP, known dynamics

Solve the Bellman equation for policy evaluation : V π = (I− γP)−1r.

Value iteration for policy evaluation or finding the best policy :

1 Iterate Vn+1 = TπVn (resp. Vn+1 = T ∗Vn)

2 Stop when ∥Vn+1 − TπVn∥ is small

Then if we are iterating with T ∗ to find the best policy : return
π = greedy(Vn).

Policy iteration for finding the best policy :

1 Use policy evaluation to find V πn

2 Perform policy improvement : πn+1 = greedy(V πn).

Both can also be performed with Q instead of V . (Advantages ?
Drawbacks ?)
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Small MDP, unknown dynamics

Main ideas : Robbins-Monro estimation and temporal differences.

TD(0) for policy evaluation

▶ V̂ (sk)← V̂ (sk) + αN(sk )(sk)δ(sk) where

δ(sk) = rk + γV̂ (sk+1)− V̂ (sk) and (rk , sk+1) = step(sk , π).

Parallel Robbins-Monro on each state. V̂ converges to V π (under
suitable conditions on α, etc.).

Q-Learning for finding the best policy

▶ Q(s, a)← Q(s, a) + αN(s,a)(s, a) (r + γmaxb Q(s ′, b)− Q(s, a))
where (r , s ′) = step(s, a)

▶ Return Q, π = greedy(Q).

Parallel Robbins-Monro on each state-action pair. Q converges to Q∗.
Works for any behaviour policy, provided it explores enough.

Both are modified value iteration / policy iteration, with R-M and TD
techniques to deal with unknown dynamics.
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Large MDP

Function approximation. Since F(S,R) is too large, introduce a
(parametric) set of functions FV and look for best V in FV .
Ex : functions representable by a given neural network.

Policy evaluation

▶ Minimize MSVEν(V ) = Es∼ν

[
(V π(s)− V (s))2

]
.

▶ Use TD(0) semi-gradient. Converges to θTD

▶ Or : estimate the solution directly with LSTD, using that AθTD = b
for some A, b (linear approximation). Variant for Q : LSTD-Q.

Finding the best policy

▶ LSPI : policy iteration using LSTD-Q for policy evaluation

▶ Fitted Q-iteration : value iteration for Q, with regression to estimate
T ∗Q from samples

▶ Approximate Q-learning : use semi-gradient updates for Q.

And more to come, not value-based.
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