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Different Markov Decision Problems

Overall goal : learn the optimal policy 7* associated to some MDP
parameterized by r(s, a) and p(:|s, a) for (s,a) € S x A.

Different contexts :
© Small state space S, known dynamics
@ Small state space S, unknown dynamics
© Large state space S, known dynamics

@ Large state space S, unknown dynamics
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Different Markov Decision Problems
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Different contexts :

© Small state space S, known dynamics =» Dynamic Programming
Value Iteration. Policy Iteration.

@ Small state space S, unknown dynamics =» Temporal Differences
Q-Learning. SARSA.

© Large state space S, known dynamics

@ Large state space S, unknown dynamics

Rémy Degenne | Inria, CRIStAL



Different Markov Decision Problems

Overall goal : learn the optimal policy 7* associated to some MDP
parameterized by r(s, a) and p(:|s, a) for (s,a) € S x A.

Different contexts :

© Small state space S, known dynamics =» Dynamic Programming
Value Iteration. Policy Iteration.

@ Small state space S, unknown dynamics =» Temporal Differences
Q-Learning. SARSA.

© Large state space S, known dynamics >
@ Large state space S, unknown dynamics =27
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Example : Mountain Car

State : (x,x) € [-1.2;0.6] x [-0.07;0.07]

Actions : A ={-1,0,1}:
full speed backwards / do nothing / full speed forward

Reward : always —1 except in the terminal (goal) state x, = 0.6

Dynamics : when doing action a; in state s; = (x;, v¢), the next state
St41 = (Xt+17 Vt+1) is

Veyr =  max{min{v; + € + 0.001a; — 0.0025 cos(3x;),0.07}, —0.07},
X1 = max{min{x; + v, 0.6}, —1.2}.
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Example : Mountain Car

State : (x,x) € [-1.2;0.6] x [-0.07;0.07]

Actions : A ={-1,0,1}:
full speed backwards / do nothing / full speed forward

Reward : always —1 except in the terminal (goal) state x, = 0.6

Dynamics : when doing action a; in state s; = (x;, v¢), the next state
St41 = (Xt+17 Vt+1) is

Veyr =  max{min{v; + € + 0.001a; — 0.0025 cos(3x;),0.07}, —0.07},
X1 = max{min{x; + v, 0.6}, —1.2}.

=¥ for physicists, this may be “continuous space, known dynamics”
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Example : Mountain Car

State : (x,x) € [-1.2;0.6] x [-0.07;0.07]

Actions : A ={-1,0,1}:
full speed backwards / do nothing / full speed forward

Reward : always —1 except in the terminal (goal) state x, = 0.6

Dynamics : when doing action a; in state s; = (x;, v¢), the next state
St41 = (Xt+17 Vt+1) is

Veyr =  max{min{v; + € + 0.001a; — 0.0025 cos(3x;),0.07}, —0.07},
X1 = max{min{x; + v, 0.6}, —1.2}.

=¥ for others, this is a “continuous space, unknown dynamics”’ setting
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Example : Mountain Car

The optimal policy is to first climb up the other side :

(b) v* for discretized mountain car
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More “Large space, Unknown Dynamics”

Many concrete problems where RL could be applied fall in this framework
» micro-grid management
» self-driving cars

» autonomous robotics ...

Benchmarks often used by researcher these days are video games :

=» dynamics may be unknown (enemies behavior, random level
generation...)

=» state-space may be large (e.g., pixels)
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Outline

From Values to Policy Learning
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Learning Values or Q-Values

In RL, one often learn values instead of policy directly :

-

o

2"

=1

V*(s) = max E™

Property : V*(s) = max, Q*(s, a).

From an estimate of V* to an estimate of Q*

Q = V(s) = max Q(s, a)

possibly harder
—

4 Q(Sv a) = I’(S, a) + 7E5’~p(~|s,a) [V(S)]

The policy deduced from an estimate V is m = greedy(V)

7(s) = argmax (r(s,a) +1Esrmp(isz) V()] )
acA

=» decide when to approximate V" or Q*
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Learning Values or Q-Values

In RL, one often learn values instead of policy directly :

o0
Q*(s,a) = max E” lz Y

t=1

5125,31231

Property : V*(s) = max, Q*(s, a).

From an estimate of V* to an estimate of Q*

Q = V(s) = max Q(s, a)

possibly harder
—

4 Q(Sv a) = I’(S, a) + 7E5’~p(~|s,a) [V(S)]

The policy deduced from an estimate V is m = greedy(V)
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Learning Values or Q-Values
In RL, one often learn values instead of policy directly :

Q*(s,a) = max E™ [Z'y 1,

Property : V*(s) = max, Q*(s, a).

5125,31231

From an estimate of V* to an estimate of Q*

Q = V(s) = max Q(s, a)

possibly harder
—

4 Q(Sv a) = r(s, a) + 7E5’~p(~|s,a) [V(S)]

The policy deduced from an estimate Q is m = greedy(Q)
m(s) = argmax Q(s, a)
acA

=¥ decide when to approximate VV* or Q*
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From Values to Policies

Question : how does the approximation error ||V — V*|| impact the
performance loss of the policy deduced from V' ?

Proposition

Let V be an approximation of V* and 7 = greedy( V).

2
V' = Voo < 72 IV = Viles -
—_—— ————
performance loss appro><|mation error

> also, [[V* — Ve < ||Q" — Q| if V(s5) = max, Q(s, a).

Exercise : Prove it !
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Proof

Ingredients :
> T*V*=V*and T"V™ = V7
» both T* and T™ are y contractions wrt || - ||eo

> asw =greedy(V), T*V=T"V

V" = Voo <|IT"VF = T"V]oo + [ TTV = TTV7[|og
STV =T Voo £V = VTl
SV = Voo +(IV = VTloo + [[VT = VT|0)

Hence

2
IV = Ve < ——|V* = V]|
1—v
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Value Functions Approximation

Problem : Often S is too large to store a vector V € R® or a table
Q e R5*Ain memory...

Solution : look for estimates V' (resp. Q) of V* (resp. Q*) in an
approximation space Fy (resp. Fq)

Fv C F(S,R) Fo CF(S x AR)
» Parametric approximation :
.sz{sr—> Vg(s)|9€@} ]:Q:{(s,a)HQg(s,a)}Qee}

=» only requires to store a parameter 6 (typically in RY with d < |S|)

Smooth parameterization if Vo Vy(s) (resp. Vo Qy(s, a)) can be computed
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Value Functions Approximation

Problem : Often S is too large to store a vector V € RS or a table
Q € R°*A in memory...

Solution : look for estimates V (resp. Q) of V* (resp. Q*) in an
approximation space Fy (resp. Fq)

Fv € F(S,R) Fo CF(Sx AR)

» Non-parametric approximation :

=¥ nearest neighbors
=» kernel smoothing

Ve = Z ST K s)

=¥ tile coding

L Tiling 3
Contimihousi fline 4

2D state 11 i

—spacrﬁf ~. —H i)
‘ T o } EEE IJ

X St
for some kernel K
X Sg)

1
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Linear function approximation

V is some linear combinations of basis functions (or features).

RS Rd}
Introducing the feature vector of a state s

¢(s) = (61(s), ..., da(s))" € R?

d
Fv = {S — Vo(s) = ZG;¢;(S)

one can write
Vi(s) = 67 4(s).

Remarks :
» smooth parameterization with Vg Vy(s) = ¢(s)
> if S ={s1,...,55}, one recovers the tabular case with

¢i(s)=1(s=s;) fori=1,...,5
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Linear function approximation

Q is some linear combinations of basis functions (or features).

GeRd}

Introducing the feature vector of a state-action pair (s, a)

¢(57 a) = ((bl(sv a)? R ¢d(57 ‘9))—r eR?

Fq= {(53)'—)0953) Z@(b,sa

one can write
Qo(s,a) = 0" ¢(s, a).

Remarks :
> smooth parameterization with Vo Qy(s, a) = ¢(s, a)
> if S={s1,...,ss}, A={a1,...,aa} one recovers the tabular case
with ¢ j(s,a) =1(s=s,a=aj) fori=1,...,Sandj=1,...,A
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Examples of features

» S C R : one may use polynomial or Fourrier basis
» S=17; X --- X Ik : one may use tensor products of features

K
o (1) Y — (W)
b () =Tl ()
RBF features

If S C R?, one can use Radial Basic Functions

¢i(s) = exp (—lls —sV?) ,

with some scale parameter 1 and “centers” s(1) ... s(9) (e.g. a uniform

covering of S, or random centers)
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Non linear function approximation

Linear function approximation requires to design (meaningful) features,
which can be hard...
Modeling V' as a neural network can be more powerful :

» neural networks are known to be universal approximators

» they “learn features” from the data

> and Vg Vy(s) can still be computed efficiently

A
O

Input layer Hidden layer

T————®» yy % 7 € —o, Target
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Outline

Policy Evaluation with Approximation
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Performance measure

In the tabular case, we proposed algorithms that converge to the exact
V7. This is in general hopeless with function approximation.

=» we can instead try to minimize the Mean Square Error

Mean Square Value Error

Let v be some probability measure on the state space S and V : § — R.

MSVE, (V) = Esy, {( VT(s) — V(S))z]
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Performance measure

In the tabular case, we proposed algorithms that converge to the exact
V7. This is in general hopeless with function approximation.

=» we can instead try to minimize the Mean Square Error

Mean Square Value Error
Let v be some probability measure on the state space S and V : § — R.

MSVE, (V) = Esy, {( VT(s) — V(S)ﬂ

=» what measure v do we choose ?

Assumption. Under the policy 7, the sequence of visited state (s;):en is
a Markov chain. We assume that it admits a stationary distribution .
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Performance measure

We proposed before algorithms that converge to the exact V™. This is in
general hopeless with function approximation.

=» we can instead try to minimize the Mean Square Error

Mean Square Value Error

Let v be some probability measure on the state space S and V : § — R.

MSVE, (V) = Eq,, [( V7™(s) — V(S)ﬂ

Remark : defining || - ||, to be the norm associated to the scalar product

<f|g>v =Eswp [f(s)g(s)] )

one has

MSVE, (V) = ||[V™ - V|2
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Minimizing the MSVE

We consider a smooth parametric representation for V/,
F ={Vpy,0 € 0}, for which we can define

MSVE(0) = E, [(V™(s) — Va(s))’]
and we aim for 0* = argming g MSVE().
Given the smooth parameterization, one can compute
VoMSVE(0) = —2E, [(V™(s) — Via(s)) Vo Vi(s)]

(valid for finite state space, and possibly under some assumption in continuous state spaces)

Gradient descent :

Or < 01+ ae X B, [(V7(s) — Vy,_, () Vo Vo,_.(s)]
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Minimizing the MSVE

We consider a smooth parametric representation for V/,
F ={Vp,0 € ©}, for which we can define

MSVE(F) = E, [(V™(s) — ve(s))2]
and we aim for §* = argming.o MSVE(0).
Given the smooth parameterization, one can compute

VGMSVE(0) = —2E,, [(V™(s) — Vi(s)) Vo Va(s)]

(valid for finite state space, and possibly under some assumption in continuous state spaces)

Stochastic gradient descent :
91; {— 9;_»_1 + ¢ X (VW(SI—) — Vgtil(st)) Vg Vgtfl(st)
(for large t, s; is approximately distributed under v)
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Minimizing the MSVE

We consider a smooth parametric representation for V/,
F ={Vpy,0 € ©}, for which we can define

MSVE(F) = E, [(V™(s) — vg(s))Z]
and we aim for 0* = argming g MSVE().
Given the smooth parameterization, one can compute
VoMSVE(f) = —2E, [(V™(s) — Vi(s)) Vo Vo(s)]

(valid for finite state space, and possibly under some assumption in continuous state spaces)

Stochastic gradient descent :
9t < et—l + Q¢ X (Vﬁ(st) — Vgril(st)) Vg Vgtfl(st)

(for large t, s; is approximately distributed under v)
=» problem : /7 (s;) is unknown...
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A semi-gradient approach
Idea : in the stochastic gradient descent update
Ot < 01—_1 + o X (Vﬂ—(st) - V9t_1(st)) v9 Vet—l(st)

replace V™ (s;) by either
» a Monte-Carlo estimate (TD(1))
> a "Bootstrap” estimate (TD(0))

TD(0) with smooth function approximation

The TD(0) semi-gradient update is
Or < 0r1 + ar ¥ (rt + Vo, (st41) — VeH(St)) Vo Vo,_,(st)

A this is not a stochastic gradient update, hence the terminology

=» stepsize tuning : decaying not too fast (Robbins-Monro style)
=?» very few convergence guarantees besides the linear case...
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TD(0) with linear function approximation

We assume Vj(s) = 07 ¢(s) with the feature vector
o(s) = (41(s), ..., da(s)) " € RY.

Then Vg Vp(s) = ¢(s) and the algorithm becomes

TD(0) with linear function approximation

Along a trajectory following 7, after observing (s;, ry, st11) update

Or = 0r—1 4+ o (”t + 79:—1¢(5t+1) - 0:—1¢(5t)) B(st)-

Using the notation ¢; = ¢(s;), one has

Or = 0: 1+ a; (rt¢t — ¢e(de — ’Y¢t+1)T9t71) .
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Convergence properties

Under the following assumptions :
© the Markov chain (s;):cy admits a stationary distribution v

O the state space is finite and the vectors ¢; = (¢i(s))scs € R® are
linearly independent

© the step-sizes satisfy the Robbins-Monro conditions, i.e.
(oo} oo
Zat:oo and Zat<oo
t=1 t=1

then the parameter 6; converges almost surely to some value fp s.t.

VeTD = l_l]:,l/ TTr VOTD
——
projected
Bellman operator

Nz, TT(V)=argmin||T™(V) — f||,
feF
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Computing the fixed point

According to the theorem, TD(0) converges to the solution to

Vo = Nr o T™ Vo,

The vector 1p can be obtained as a solution to the linear system

/47T9'1'D:b7r7
where
AT = (Bilgi — P i)
bT = (r"[¢:)

Rémy Degenne | Inria, CRIStAL
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Computing the fixed point

According to the theorem, TD(0) converges to the solution to
Vo, =Nr, T" Vo,

The vector f1p can be obtained as a solution to the linear system

A"Orpy = b",
where

AT = E, e [605)(6(s) —ve(s) ] € R

s/ ~p(-[s,m(s

b" = Esuy[r(s,m(s))d(s)] € R

Rémy Degenne | Inria, CRIStAL
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Why does TD(0) converge to 6y ?

(heuristic argument in [Sutton and Barto, 2018])

Recall the TD(0) update :

0 = 01+ (rt¢(5t) — o(se)(o(se) — ’Y¢(5t+1))T9t—1)
= 0,:_1 + Qi (bt - Atot—l) )

where we introduce

Ae
be

o(se)(p(st) — vp(se41)) T € RI*
rt¢(5t) cRY
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Why does TD(0) converge to 6y ?

(heuristic argument in [Sutton and Barto, 2018])

Recall the TD(0) update :

B = Bortan (redlse) — H(se)(0(5) — 16(5e21)) O 1)
= 0,:_1 + Qi (bt - Atot—l) )

where we introduce

Ar = Egw [0(s)(6(st) — vo(se41)) ] = AT
by =~ Egmp[reo(st)] =b"

when t is large as s; is approximately drawn under v.
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Why does TD(0) converge to 6y ?

(heuristic argument in [Sutton and Barto, 2018])

Recall the TD(0) update :

0 = 6: 1+ (rt¢(5t) — ¢(st)(p(st) — '7¢(5f+1))—r9t*1)
= ot—l + o (bt — Atat—l) )

where we introduce

A Esy\/u [¢(5f)(¢(5t) - 7¢(Sf+1))—r] = AT
by =~ Egp[ro(s)] =b"

when t is large as s; is approximately drawn under v.
Approximate recursion :

Or=0i 1 +a(b” —A"0; 1)
If it converges, the convergence is towards a fixed point, satisfying

b™— AT9 =0

Rémy Degenne | Inria, CRIStAL
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Least Square Temporal Difference

Idea : Now that we know towards what TD(0) converges, is there a way
to get there faster?

A"y = b™,

where

A" = E, e [6(5)(8(s) —19(s) | € RIX

s/ mp(Clsm(s))
bT = Eswu [r(s, 7'('(5))(15(5)] € Rd

» use estimation :
N n T 1
Ao =137 0(s) (6(5) ~ ¥6(502) and By =3 ro(s)
t=1

If A, is invertible, 0, = A 'b,.

Rémy Degenne | Inria, CRIStAL
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An online implementation of LSTD

We need to compute

where

n

/2\,, = Zib(st) (¢(5t) - 7¢(5t+1))T and B" = Z rf¢(st)‘

t=1
=» requires to invert a d X d matrix at every round...
(much more costly than the TD(0) update!)

More efficient : update the inverse online!

Sherman-Morrison formula

For any matrix B € R?*9 and vectors u, v € RY,

B luwTB1!

™1 _ p-1
(B+ut) =B 1+vTiB-lu
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LSTD update versus TD(0) update

Letting ¢ = ¢(s¢), both update also rely on temporal differences

6:(0) = re + ¥d 10 — ¢, 0

Recursive LSTD

Cn—1¢n(¢n - 7¢n+1)—r Cn—l
1+ (¢n - 7¢n+1)TCn—1¢n

Cn_]_
1+ (¢" - 7¢n+1)T Co10n 5"(0”—1)¢n

Cn = Cn—l -

0 = Op_1+

TD(0)

0n=0n_1+ an(sn(anfl)(bn

Complexity : O(d?) versus 0(1) but LSTD converges faster
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Wait... How good is the TD solution ?

We presented two algorithms which converge to the value function

Vip(s) = 9;3(?(5)

such that Vip is a fixed point to Mz, T™ (when it exists).
=¥ Is it at all close to our target V™7

Proposition
If v is the stationary distribution of the sequence of states

» Mz, T is a vy contraction with respect to || - ||, and admits
therefore a unique fixed point, Vip

» The TD solution satisfies

1
VT -V, <——inf ||[VT -V
|| TD||V— \/1_—72\/'2]__” ||1/
Answer : not too far from the best possible approximation (wrt to || - |],)
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Outline

Learning the Optimal Policy : Approximate Dynamic Programming
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Reminder : Policy Iteration

© Let 7wy be any stationary policy
© At each iteration k=1,2,..., K

=» Policy evaluation : given mx_1, compute Vj = V7™ k-1,
=» Policy improvement : compute the greedy policy

ﬂ-k(s) € argriax [I’(S7 a) + 7Es’~P(~|s,a)[Vk*1(sl)]] :
ac

© Return the last policy mx
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Reminder : Policy Iteration

© Let 7wy be any stationary policy

© At each iteration k=1,2,..., K
=» Policy evaluation : given mx_1, compute Vj = V7™ k-1,
=» Policy improvement : compute the greedy policy

ﬂ-k(s) € argriax [I’(S7 a) + 7Es’~P(~|s,a)[Vk*1(sl)]] :
ac

© Return the last policy mx

» Problem : we saw how to approximately perform policy evaluation,
how about policy improvement ?
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Reminder : Policy lteration

© Let 7wy be any stationary policy
© At each iteration k=1,2,..., K

=» Policy evaluation : given mx_1, compute Vj = V7™ k-1,
=» Policy improvement : compute the greedy policy

ﬂ-k(s) € argn}‘\ax [I’(S7 a) + 7Es’~P(~|s,a)[Vk*1(S,)]] :
ac

© Return the last policy mx

» Problem : we saw how to approximately perform policy evaluation,
how about policy improvement ?

=» work with Q-values directly to make policy improvement easy !
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LSTD-Q

LSTD-Q : a variant of LSTD aimed at estimating directly Q™
Qo(s,a) =07 ¢(s, a)

The solution to
Qo =Nz, T"Qp

can similarly be approximated by solving a linear system.

{ A, = A1+ ¢(Sn7 an)(¢(5na an) - ’V(b(anrla 71'(SnJrl)))T
bn = bn—l + ¢(5na an)rn

QESTD_Q — A;lbn

=» The resulting algorithm is Least-Squares Policy Iteration (LSPI)
[Lagoudakis and Parr, 2003]

Rémy Degenne | Inria, CRIStAL
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Reminder : Value lteration

© Let @y be any action-value function
@ At each iteration k=1,2,... . K

Qk(s,a) = T"Qk-1(s,a)

= r(s, a) + IEs’r\ap('\s,a) |:g'€aﬁ Qkfl(slv a/):|

© Return the greedy policy

7k (s) € argmax Qk (s, a).
acA
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Reminder : Value lteration

© Let @y be any action-value function
@ At each iteration k =1,2,... . K

Qu(s;a) = T Qr-1(s,a)

= r(S, a)—i—ES/NP(,‘S,a) |:g/~|€aﬁ le(sl’a/):|

© Return the greedy policy

7k (s) € argmax Qk (s, a).
acA

=» Problem : how can we approximate 7*Qy ?

=» Problem : does value iteration still work with such an
approximation ?

Rémy Degenne | Inria, CRIStAL
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Fitted-Q Iteration

Input : number of iterations K, number of samples per iteration n,
Initial function Qp € F, sampling distribution p,
Approximation space F, loss function /¢

1 fork=1,...,K do
2 Draw n samples (s;, a;) ~ p
3 Perform n transitions r;, s/ = step(s;, a;)
4 Compute the targets y; = r; + ymax, Qx—1(s/, a)
5 From the training dataset Dy = {((si, ai), ¥i)i<i<n}, solve the
6 empirical risk minimization problem :
fe ar;genfl_ln f.ZE vi, f(si,a;))
7 Set Qx = f (with clipping if (s, a) ¢ [— 1"‘3;' fLa;])
8 end

Return: m = greedy(Qk)

» ERM can be replaced by other possibly non-parameteric regression

techniques (decision trees, k-nn, ...)
Rémy Degenne | Inria, CRIStAL
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Linear Fitted Q-Iteration

Input : number of iterations K, number of samples per iteration n,
Initial function Qp € F, sampling distribution p,
Approximation space F, loss function /¢

for k=1,...,K do

Draw n samples (s;, a;) ~ p

Perform n transitions r;, s] = step(s;, a;)

Compute the targets y; = r; + ymax, Qx—1(s/, a)

From the training dataset Dy = {((si, a;), ¥i)i<i<n}, solve the

least squares problem :

o s W N =

1 o T 2
Ok € al;)gerﬂréln . ; (y, 0" &(s;, a,))
7 Set Qk(s,a) = 0/ ¢(s, a) (with clipping).
end
Return: 7 = greedy(Qxk)

(=]
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Linear Fitted-Q : Sampling

iid
@ Draw n samples (s;, a;) '~ p
@ Perform a transition for each of them :
s~ p(-lsi,a;) and r~ v )
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Linear Fitted-Q : Sampling

iid
@ Draw n samples (s;, a;) '~ p
@ Perform a transition for each of them :
s~ p(-lsi,a;) and r~ v )

=¥ In practice sampling can be done once before running the algorithm
(or a database of transitions can be used)

=?» The sampling distribution p should cover the state-action space in
all relevant regions

=?» The algorithm requires call to a simulator which can simulate
independent transitions from anywhere in the state-action space
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Linear Fitted-Q : Building the training set

@ Compute y; = r; + v max, Qk—1(s/, a)
Q Build training set Dy = {((si, ai), ¥i)1<i<n}
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-34



Linear Fitted-Q : Building the training set

© Compute y; = rj + v max, Qx_1(s/, a)
Q Build training set Dy = {((S,', a,-),y,-)lg,-g,,} J

=» Each sample y; is an unbiased estimate of T*Qx_1(s;, ;) :
Elyilsi, ai, Q1] = E[r; + max Q—1(s7,a")|si, ai, Q1]
=r(si,a;) + ’YEs'Np(~\s,-,a,-)[ma?X Qk—1(s",a")]
= T"Qk—1(si, ai)

=» The problem “reduces” to standard regression

=» A new regression problem at each iteration :
new function to fit T*Qx_1 + new training set Dy
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Linear Fitted-Q : The regression problem

© Solve the least squares problem

n

0 € argmin 1 Z (vi — 07 ¢(si, ai))2

n
HeRrd i—1
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Linear Fitted-Q : The regression problem

© Solve the least squares problem

n

0 € argmin 1 Z (vi — 07 ¢(si, ai))2

n
HeRrd i—1

=¥ standard linear regression problem with design matrix and targets

o(s1, a1)1 yi
X = ¢(52732) ER"Xd and Y = Y2 ERd
B(sn, an)T Yn

whose solution is .
o= (X"TX) XTv.
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Linear Fitted-Q : Error bound

Linear FQI with a space F of d features, with n samples drawn from p at
each iteration, returns a policy mk after K iterations which satisfies, w.p.
larger than 1 — 0,

2y . x
Wcu,p [:ggf'g;HT g —fllp

o /25|
+o( )

see, e.g. [Munos and Szepesvari, 2008]

Q" — Q™| <
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Outline

A Learning the Optimal Policy : Approximate Q-Learning
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A semi-gradient extension of Q-Learning

Let's try to find & minimizing

MSE(l) = E, [(Q*(s, a) — Qo(s, a))ﬂ
VeMSE(0) = —2E, [(Q*(s,a) — Qo(s. a)) VoQu(s,a)]
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A semi-gradient extension of Q-Learning

Let's try to find & minimizing

MSE(l) = E, [(Q*(s, a) — Qo(s, a))z}
VeMSE(0) = —2E, [(Q*(s,a) — Qo(s. a)) VoQu(s,a)]

=» gradient descent :

0+ 60+ aE, [(Q*(s,a) — Qu(s,a)) VoQy(s, a)]
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A semi-gradient extension of Q-Learning

Let's try to find & minimizing

MSE(0) = E, [(Q*(s,a)—og(s,a)ﬂ
VgMSE(0) —2E, [(Q*(s,a) — Qu(s,a)) VoQu(s, a)]

=» gradient descent :
0+ 60+ aE, [(Q*(s,a) — Qu(s,a)) VoQy(s, a)]
=» stochastic gradient descent : if (s, a;) ~ v,

0+ 0+ a(Q(st,ar) — Qo(st, ar)) VoQy(st, ar)
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A semi-gradient extension of Q-Learning

Let's try to find & minimizing

MSE(0) = E, [(Q*(s,a)—og(s,a)ﬂ
VgMSE(0) —2E, [(Q*(s,a) — Qu(s,a)) VoQu(s, a)]

=» gradient descent :

0+ 60+ aE, [(Q*(s,a) — Qu(s,a)) VoQy(s, a)]
=» stochastic gradient descent : if (s, a;) ~ v,

0+ 0+ a(Q (st ar) — Qo(st, ar)) VoQy(st, ar)

=» bootstrapping : given a transition (s, ar, rt, Sr+1),

00+« (ft + 7 mbaX QH(SH»L b) - Q@(St’ 3t)> VGQG(St; at)
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A semi-gradient extension of Q-Learning

Let's try to find & minimizing

MSE(d) = E, [(Q*(s, a) — Q(s, a))z}
VgMSE(0) —2E, [(Q*(s,a) — Qo(s,2)) VoQu(s, a)]

Q-Learning update with function approximation

Given a Q-value Qy(s, a), this semi-gradient update is

{ 0y = r+ymaxp Qp,_,(St+1,b) — Qo,_,(St, ar)
0 = 01+ a:i6:VoQo,_,(st,ar)

=» one recovers Q-Learning in the tabular case
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Negative results

TD(0) | LSPI | Fitted-Q | Q-Learning
Linear functions v v v %
Non-linear functions ® ® (v) ®

» TD(0) is known to diverge with non-linear function approximation

» Q-Learning can already diverge with linear function approximation...

Rémy Degenne | Inria, CRIStAL
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Tricks to make Q-Learning work

Q-Learning update with function approximation

{ 0 = rr+ymaxp Q91_1(5t+17 b) - QOt_l(st, at)
0 = 0i14 0:0:VeQo, (5, ar)

Alternative view : in each step t, perform one SGD step on

L(#) =E (r +ymax Qo,_(s', b) = Qo(s, 3)) 2]

(s,a)~p
(r,s")~step(s,a)

where p is the current behavior policy.
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Tricks to make Q-Learning work

Q-Learning update with function approximation

{ 0 = rr+ymaxp Q91_1(5t+17 b) - QOt_l(st» 3t)
0 = 0i14 0:0:VeQo, (5, ar)

Alternative view : in each step t, perform one SGD step on

2
LO)=E (sa)~p (r +ymax Qo,_(s', b) = Qo(s, a)> ]

(r,s")~step(s,a)

where p is the current behavior policy.

Three tricks : (e.g. [Mnih et al., 2015, Hessel et al., 2018])
=» experience replay : rely on past transisions instead of the current one
=» mini-batches : rely on more than one transition
=?» two learning scales : do not update the target network in every round
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Tricks to make Q-Learning work

Q-Learning update with function approximation

{ 0 = rr+ymaxp Q91_1(5t+17 b) - QOt_l(st» 3t)
0 = 0i14 0:0:VeQo, (5, ar)

Alternative view : in each step t, perform one SGD step on

2
LO)=E (52~ (r + max Qo,_, (s, b) — Qu(s, a)> ]

(r,s")~step(s,a)

where p is the current behavior policy.

Three tricks : (e.g. [Mnih et al., 2015, Hessel et al., 2018])
=» experience replay : rely on past transisions instead of the current one
=» mini-batches : rely on more than one transition
=?» two learning scales : do not update the target network in every round
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Tricks to make Q-Learning work

Q-Learning update with function approximation

{ 0 = rr+ymaxp Q91_1(5t+17 b) - QOt_l(st» 3t)
0 = 0i14 0:0:VeQo, (5, ar)

Alternative view : in each step t, perform one SGD step on

2
LO)=E (sa)~p (r +ymax Qo,_(s', b) = Qo(s, a)> ]

(r,s")~step(s,a)

where p is the current behavior policy.

Three tricks : (e.g. [Mnih et al., 2015, Hessel et al., 2018])
=» experience replay : rely on past transisions instead of the current one
=» mini-batches : rely on more than one transition
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Tricks to make Q-Learning work

Q-Learning update with function approximation

{ 0 = rr+ymaxp Q91_1(5t+17 b) - QOt_l(st» at)
0 = 0i14 0:0:VeQo, (5, ar)

Alternative view : in each step t, perform one SGD step on

2
LO)=E (sa)~p (r +ymax Qo (s, b) = Qo(s, a)> ]

(r,s")~step(s,a)

where p is the current behavior policy.

Three tricks : (e.g. [Mnih et al., 2015, Hessel et al., 2018])
=» experience replay : rely on past transisions instead of the current one
=» mini-batches : rely on more than one transition

=?» two learning scales : do not update the target network in every round
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Deep Q Networks

Input : number of iterations T,

minimatch size B, update frequency for the target network /\/,

exploration sequence (), stepsize (o)

Initialize : replay buffer D <« {}, first state s,

online network parameter 6,

fort=1,...,T do

a; = argmax,Qy(st, a) w.p. 1 — &, random action w.p. &¢

Perform transition (r¢, s41) = step(s, ar)

Add transition to the replay buffer D <— D U {(s¢, ar, re, Se41)}

Draw a minibatch B of size B uniformly from D

Perform one step of online optimization on the loss functi20n
L(9) = (5732)65 (r + 7y max Q, (s',b) — Qo(s, a))

8 eg. 0+ 0—a/Vyl(0)

NGO W N =

10 end
Return: @y
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Results on Atari Games

DQN was proposed in combination with
» a well chosen pre-processing of the state

» an optimized architecture for the Deep Neural Network used for the
approximator

that reaches super-human level performance on Atari games.
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https://www.youtube.com/watch?v=V1eYniJ0Rnk

Summary

In this class, we mostly saw how to scale up reinforcement learning with
Value-based methods :

» Fitted-Q lteration
» Deep Q Networks

In the sequel, we will see :
» Policy-based methods (based on direct search over a policy space)
» Actor-critic methods (using both a policy and a value),

whose performance can also be "boosted” with Deep Learning.

We will also discuss the exploration issue : can we go beyond e-greedy ?
(starting with very simple MDPs : multi-armed bandits)
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