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Different Markov Decision Problems

Overall goal : learn the optimal policy π⋆ associated to some MDP
parameterized by r(s, a) and p(·|s, a) for (s, a) ∈ S ×A.

Different contexts :

1 Small state space S, known dynamics

2 Small state space S, unknown dynamics

3 Large state space S, known dynamics

4 Large state space S, unknown dynamics
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Different Markov Decision Problems

Overall goal : learn the optimal policy π⋆ associated to some MDP
parameterized by r(s, a) and p(·|s, a) for (s, a) ∈ S ×A.

Different contexts :

1 Small state space S, known dynamics ➜ Dynamic Programming
Value Iteration. Policy Iteration.

2 Small state space S, unknown dynamics ➜ Temporal Differences
Q-Learning. SARSA.

3 Large state space S, known dynamics ➜ ?blablablablabla

4 Large state space S, unknown dynamics ➜ ?blablablablabla
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Example : Mountain Car

State : (x , ẋ) ∈ [−1.2; 0.6]× [−0.07; 0.07]

Actions : A = {−1, 0, 1} :
full speed backwards / do nothing / full speed forward

Reward : always −1 except in the terminal (goal) state x⋆ = 0.6

Dynamics : when doing action at in state st = (xt , vt), the next state
st+1 = (xt+1, vt+1) is{

vt+1 = max{min{vt + ϵt + 0.001at − 0.0025 cos(3xt), 0.07},−0.07},
xt+1 = max{min{xt + vt , 0.6},−1.2}.

➜ for physicists, this may be “continuous space, known dynamics”
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Example : Mountain Car

State : (x , ẋ) ∈ [−1.2; 0.6]× [−0.07; 0.07]

Actions : A = {−1, 0, 1} :
full speed backwards / do nothing / full speed forward

Reward : always −1 except in the terminal (goal) state x⋆ = 0.6

Dynamics : when doing action at in state st = (xt , vt), the next state
st+1 = (xt+1, vt+1) is{

vt+1 = max{min{vt + ϵt + 0.001at − 0.0025 cos(3xt), 0.07},−0.07},
xt+1 = max{min{xt + vt , 0.6},−1.2}.

➜ for others, this is a “continuous space, unknown dynamics” setting
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Example : Mountain Car

The optimal policy is to first climb up the other side :
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More “Large space, Unknown Dynamics”

Many concrete problems where RL could be applied fall in this framework

▶ micro-grid management

▶ self-driving cars

▶ autonomous robotics . . .

Benchmarks often used by researcher these days are video games :

➜ dynamics may be unknown (enemies behavior, random level
generation...)

➜ state-space may be large (e.g., pixels)
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Outline

1 From Values to Policy Learning

2 Policy Evaluation with Approximation

3 Learning the Optimal Policy : Approximate Dynamic Programming

4 Learning the Optimal Policy : Approximate Q-Learning
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Learning Values or Q-Values

In RL, one often learn values instead of policy directly :

V ⋆(s) = max
π

Eπ

[ ∞∑
t=1

γt−1rt

∣∣∣∣∣ s1 = s

]
Property : V ⋆(s) = maxa Q

⋆(s, a).

From an estimate of V ⋆ to an estimate of Q⋆

Q
easy−→ V (s) = max

a
Q(s, a)

V
possibly harder−→ Q(s, a) = r(s, a) + γEs′∼p(·|s,a) [V (s)]

The policy deduced from an estimate V is π = greedy(V )

π(s) = argmax
a∈A

(
r(s, a) + γEs′∼p(·|s,a) [V (s ′)]

)
➜ decide when to approximate V ⋆ or Q⋆
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Learning Values or Q-Values

In RL, one often learn values instead of policy directly :

Q⋆(s, a) = max
π

Eπ

[ ∞∑
t=1

γt−1rt

∣∣∣∣∣ s1 = s, a1 = a

]
Property : V ⋆(s) = maxa Q

⋆(s, a).

From an estimate of V ⋆ to an estimate of Q⋆

Q
easy−→ V (s) = max

a
Q(s, a)

V
possibly harder−→ Q(s, a) = r(s, a) + γEs′∼p(·|s,a) [V (s)]

The policy deduced from an estimate Q is π = greedy(Q)

π(s) = argmax
a∈A

Q(s, a)

➜ decide when to approximate V ⋆ or Q⋆
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From Values to Policies

Question : how does the approximation error ∥V − V ⋆∥ impact the
performance loss of the policy deduced from V ?

Proposition

Let V be an approximation of V ⋆ and π = greedy(V ).

∥V ⋆ − V π∥∞︸ ︷︷ ︸
performance loss

≤ 2γ

1− γ
∥V ⋆ − V ∥∞︸ ︷︷ ︸

approximation error

.

▶ also, ∥V ⋆ − V ∥∞ ≤ ∥Q⋆ − Q∥∞ if V (s) = maxa Q(s, a).

Exercise : Prove it !
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Proof

Ingredients :

▶ T ⋆V ⋆ = V ⋆ and TπV π = V π

▶ both T ⋆ and Tπ are γ contractions wrt ∥ · ∥∞
▶ as π = greedy(V ), T ⋆V = TπV

∥V ⋆ − V π∥∞ ≤ ∥T ⋆V ⋆ − TπV ∥∞ + ∥TπV − TπV π∥∞
≤ ∥T ⋆V ⋆ − T ⋆V ∥∞ + γ∥V − V π∥∞
≤ γ∥V ⋆ − V ∥∞ + γ(∥V − V ⋆∥∞ + ∥V ⋆ − V π∥∞)

Hence

∥V ⋆ − V π∥∞ ≤
2γ

1− γ
∥V ⋆ − V ∥∞.
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Value Functions Approximation

Problem : Often S is too large to store a vector V ∈ RS or a table
Q ∈ RS×A in memory...

Solution : look for estimates V (resp. Q) of V ⋆ (resp. Q∗) in an
approximation space FV (resp. FQ)

FV ⊆ F (S,R) FQ ⊆ F (S ×A,R)

▶ Parametric approximation :

FV =
{
s 7→ Vθ(s)

∣∣ θ ∈ Θ
}
FQ =

{
(s, a) 7→ Qθ(s, a)

∣∣ θ ∈ Θ
}

➜ only requires to store a parameter θ (typically in Rd with d ≪ |S|)

Smooth parameterization if ∇θVθ(s) (resp. ∇θQθ(s, a)) can be computed
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Value Functions Approximation
Problem : Often S is too large to store a vector V ∈ RS or a table
Q ∈ RS×A in memory...

Solution : look for estimates V (resp. Q) of V ⋆ (resp. Q∗) in an
approximation space FV (resp. FQ)

FV ⊆ F (S,R) FQ ⊆ F (S ×A,R)

▶ Non-parametric approximation :

➜ nearest neighbors
➜ kernel smoothing

Vn(s) =
n∑

t=1

vt
K(x , st)∑n
ℓ=1 K(x , sℓ)

for some kernel K

➜ tile coding
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Linear function approximation

V is some linear combinations of basis functions (or features).

FV =

{
s 7→ Vθ(s) =

d∑
i=1

θiϕi (s)

∣∣∣∣∣ θ ∈ Rd

}

Introducing the feature vector of a state s

ϕ(s) = (ϕ1(s), . . . , ϕd(s))
⊤ ∈ Rd

one can write
Vθ(s) = θ⊤ϕ(s).

Remarks :

▶ smooth parameterization with ∇θVθ(s) = ϕ(s)

▶ if S = {s1, . . . , sS}, one recovers the tabular case with
ϕi (s) = 1(s = si ) for i = 1, . . . ,S
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Linear function approximation

Q is some linear combinations of basis functions (or features).

FQ =

{
(s, a) 7→ Qθ(s, a) =

d∑
i=1

θiϕi (s, a)

∣∣∣∣∣ θ ∈ Rd

}

Introducing the feature vector of a state-action pair (s, a)

ϕ(s, a) = (ϕ1(s, a), . . . , ϕd(s, a))
⊤ ∈ Rd

one can write
Qθ(s, a) = θ⊤ϕ(s, a).

Remarks :

▶ smooth parameterization with ∇θQθ(s, a) = ϕ(s, a)

▶ if S = {s1, . . . , sS}, A = {a1, . . . , aA} one recovers the tabular case
with ϕi,j(s, a) = 1(s = si , a = aj) for i = 1, . . . ,S and j = 1, . . . ,A
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Examples of features

▶ S ⊆ R : one may use polynomial or Fourrier basis

▶ S = I1 × · · · × IK : one may use tensor products of features

ϕ(i1,...,iK )

((
s(1), . . . , s(K)

))
=

K∏
j=1

ϕij

(
s(j)

)

RBF features

If S ⊆ Rd , one can use Radial Basic Functions

ϕi (s) = exp
(
−η∥s − s(i)∥2

)
,

with some scale parameter η and “centers” s(1), . . . , s(d) (e.g. a uniform
covering of S, or random centers)
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Non linear function approximation

Linear function approximation requires to design (meaningful) features,
which can be hard...

Modeling V as a neural network can be more powerful :

▶ neural networks are known to be universal approximators

▶ they “learn features” from the data

▶ and ∇θVθ(s) can still be computed efficiently
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Outline

1 From Values to Policy Learning

2 Policy Evaluation with Approximation

3 Learning the Optimal Policy : Approximate Dynamic Programming

4 Learning the Optimal Policy : Approximate Q-Learning
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Performance measure

In the tabular case, we proposed algorithms that converge to the exact
V π. This is in general hopeless with function approximation.

➜ we can instead try to minimize the Mean Square Error

Mean Square Value Error

Let ν be some probability measure on the state space S and V : S → R.

MSVEν(V ) = Es∼ν

[
(V π(s)− V (s))2

]

➜ what measure ν do we choose ?

Assumption. Under the policy π, the sequence of visited state (st)t∈N is
a Markov chain. We assume that it admits a stationary distribution ν.
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Performance measure

We proposed before algorithms that converge to the exact V π. This is in
general hopeless with function approximation.

➜ we can instead try to minimize the Mean Square Error

Mean Square Value Error

Let ν be some probability measure on the state space S and V : S → R.

MSVEν(V ) = Es∼ν

[
(V π(s)− V (s))2

]
Remark : defining || · ||ν to be the norm associated to the scalar product

⟨f |g⟩ν = Es∼ν [f (s)g(s)] ,
one has

MSVEν(V ) = ||V π − V ||2ν
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Minimizing the MSVE

We consider a smooth parametric representation for V ,
F = {Vθ, θ ∈ Θ}, for which we can define

MSVE(θ) = Eν

[
(V π(s)− Vθ(s))

2
]

and we aim for θ⋆ = argminθ∈Θ MSVE(θ).

Given the smooth parameterization, one can compute

∇θMSVE(θ) = −2Eν [(V
π(s)− Vθ(s))∇θVθ(s)]

(valid for finite state space, and possibly under some assumption in continuous state spaces)

Gradient descent :

θt ← θt−1 + αt × Eν

[(
V π(s)− Vθt−1(s)

)
∇θVθt−1(s)

]
bla
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Given the smooth parameterization, one can compute

∇θMSVE(θ) = −2Eν [(V
π(s)− Vθ(s))∇θVθ(s)]

(valid for finite state space, and possibly under some assumption in continuous state spaces)

Stochastic gradient descent :
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(for large t, st is approximately distributed under ν)
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Minimizing the MSVE

We consider a smooth parametric representation for V ,
F = {Vθ, θ ∈ Θ}, for which we can define

MSVE(θ) = Eν

[
(V π(s)− Vθ(s))

2
]

and we aim for θ⋆ = argminθ∈Θ MSVE(θ).

Given the smooth parameterization, one can compute

∇θMSVE(θ) = −2Eν [(V
π(s)− Vθ(s))∇θVθ(s)]

(valid for finite state space, and possibly under some assumption in continuous state spaces)

Stochastic gradient descent :

θt ← θt−1 + αt ×
(
V π(st)− Vθt−1(st)

)
∇θVθt−1(st)

(for large t, st is approximately distributed under ν)

➜ problem : V π(st) is unknown...
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A semi-gradient approach

Idea : in the stochastic gradient descent update

θt ← θt−1 + αt ×
(
V π(st)− Vθt−1(st)

)
∇θVθt−1(st)

replace V π(st) by either

▶ a Monte-Carlo estimate (TD(1))

▶ a “Bootstrap” estimate (TD(0))

TD(0) with smooth function approximation

The TD(0) semi-gradient update is

θt ← θt−1 + αt ×
(
rt + γVθt−1(st+1)− Vθt−1(st)

)
∇θVθt−1(st)

" this is not a stochastic gradient update, hence the terminology

➜ stepsize tuning : decaying not too fast (Robbins-Monro style)

➜ very few convergence guarantees besides the linear case...
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TD(0) with linear function approximation

We assume Vθ(s) = θ⊤ϕ(s) with the feature vector

ϕ(s) = (ϕ1(s), . . . , ϕd(s))
⊤ ∈ Rd .

Then ∇θVθ(s) = ϕ(s) and the algorithm becomes

TD(0) with linear function approximation

Along a trajectory following π, after observing (st , rt , st+1) update

θt = θt−1 + αt

(
rt + γθ⊤t−1ϕ(st+1)− θ⊤t−1ϕ(st)

)
ϕ(st).

Using the notation ϕt = ϕ(st), one has

θt = θt−1 + αt

(
rtϕt − ϕt(ϕt − γϕt+1)

⊤θt−1

)
.
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Convergence properties

Theorem
Under the following assumptions :

1 the Markov chain (st)t∈N admits a stationary distribution ν

2 the state space is finite and the vectors ϕi = (ϕi (s))s∈S ∈ RS are
linearly independent

3 the step-sizes satisfy the Robbins-Monro conditions, i.e.
∞∑
t=1

αt =∞ and
∞∑
t=1

αt <∞

then the parameter θt converges almost surely to some value θTD s.t.

VθTD = ΠF,νT
π︸ ︷︷ ︸

projected
Bellman operator

VθTD

ΠF,νT
π(V ) = argmin

f∈F
||Tπ(V )− f ||ν

[Tsitsiklis and Van Roy, 1996]Rémy Degenne | Inria, CRIStAL - 20



Computing the fixed point

According to the theorem, TD(0) converges to the solution to

VθTD = ΠF,νT
πVθTD

Proposition

The vector θTD can be obtained as a solution to the linear system

AπθTD = bπ,

where

Aπ
i,j = ⟨ϕi |ϕj − γPπϕj⟩ν
bπi = ⟨rπ|ϕi ⟩
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Computing the fixed point

According to the theorem, TD(0) converges to the solution to

VθTD = ΠF,νT
πVθTD

Proposition

The vector θTD can be obtained as a solution to the linear system

AπθTD = bπ,

where

Aπ = E s∼ν
s′∼p(·|s,π(s))

[
ϕ(s) (ϕ(s)− γϕ(s ′))

⊤
]
∈ Rd×d

bπ = Es∼ν [r(s, π(s))ϕ(s)] ∈ Rd
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Why does TD(0) converge to θTD ?

(heuristic argument in [Sutton and Barto, 2018])

Recall the TD(0) update :

θt = θt−1 + αt

(
rtϕ(st)− ϕ(st)(ϕ(st)− γϕ(st+1))

⊤θt−1

)
= θt−1 + αt (bt − Atθt−1) ,

where we introduce

At = ϕ(st)(ϕ(st)− γϕ(st+1))
⊤ ∈ Rd×d

bt = rtϕ(st) ∈ Rd
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Why does TD(0) converge to θTD ?
(heuristic argument in [Sutton and Barto, 2018])

Recall the TD(0) update :

θt = θt−1 + αt

(
rtϕ(st)− ϕ(st)(ϕ(st)− γϕ(st+1))

⊤θt−1

)
= θt−1 + αt (bt − Atθt−1) ,

where we introduce

At ≃ Est∼ν

[
ϕ(st)(ϕ(st)− γϕ(st+1))

⊤] = Aπ

bt ≃ Est∼ν [rtϕ(st)] = bπ

when t is large as st is approximately drawn under ν.
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Why does TD(0) converge to θTD ?
(heuristic argument in [Sutton and Barto, 2018])

Recall the TD(0) update :

θt = θt−1 + αt

(
rtϕ(st)− ϕ(st)(ϕ(st)− γϕ(st+1))

⊤θt−1

)
= θt−1 + αt (bt − Atθt−1) ,

where we introduce

At ≃ Est∼ν

[
ϕ(st)(ϕ(st)− γϕ(st+1))

⊤] = Aπ

bt ≃ Est∼ν [rtϕ(st)] = bπ

when t is large as st is approximately drawn under ν.

Approximate recursion :

θt = θt−1 + α (bπ − Aπθt−1)

If it converges, the convergence is towards a fixed point, satisfying

bπ − Aπθ = 0
Rémy Degenne | Inria, CRIStAL - 22



Least Square Temporal Difference

Idea : Now that we know towards what TD(0) converges, is there a way
to get there faster ?

AπθTD = bπ,

where

Aπ = E s∼ν
s′∼p(·|s,π(s))

[
ϕ(s) (ϕ(s)− γϕ(s ′))

⊤
]
∈ Rd×d

bπ = Es∼ν [r(s, π(s))ϕ(s)] ∈ Rd

▶ use estimation :

Ân =
1

n

n∑
t=1

ϕ(st) (ϕ(st)− γϕ(st+1))
⊤ and b̂n =

1

n

n∑
t=1

rtϕ(st)

If Ân is invertible, θ̂n = Â−1
n b̂n.
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An online implementation of LSTD

We need to compute
θ̂n = Â−1

n b̂n

where

Ân =
n∑

t=1

ϕ(st) (ϕ(st)− γϕ(st+1))
⊤ and b̂n =

n∑
t=1

rtϕ(st).

➜ requires to invert a d × d matrix at every round...
(much more costly than the TD(0) update !)

More efficient : update the inverse online !

Sherman-Morrison formula

For any matrix B ∈ Rd×d and vectors u, v ∈ Rd ,

(
B + uv⊤)−1

= B−1 − B−1uv⊤B−1

1 + v⊤B−1u

Rémy Degenne | Inria, CRIStAL - 24



LSTD update versus TD(0) update

Letting ϕt = ϕ(st), both update also rely on temporal differences

δt(θ) = rt + γϕ⊤
t+1θ − ϕ⊤

t θ

Recursive LSTD

Cn = Cn−1 −
Cn−1ϕn(ϕn − γϕn+1)

⊤Cn−1

1 + (ϕn − γϕn+1)⊤Cn−1ϕn

θn = θn−1 +
Cn−1

1 + (ϕn − γϕn+1)⊤Cn−1ϕn
δn(θn−1)ϕn

TD(0)

θn = θn−1 + αnδn(θn−1)ϕn

Complexity : O(d2) versus 0(1) but LSTD converges faster
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Wait... How good is the TD solution ?

We presented two algorithms which converge to the value function

VTD(s) = θ⊤TDϕ(s)

such that VTD is a fixed point to ΠF,νT
π (when it exists).

➜ Is it at all close to our target V π ?

Proposition

If ν is the stationary distribution of the sequence of states

▶ ΠF,νT
π is a γ contraction with respect to || · ||ν and admits

therefore a unique fixed point, VTD

▶ The TD solution satisfies

||V π − VTD||ν ≤
1√

1− γ2
inf
V∈F
||V π − V ||ν

Answer : not too far from the best possible approximation (wrt to || · ||ν)
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Outline
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3 Learning the Optimal Policy : Approximate Dynamic Programming

4 Learning the Optimal Policy : Approximate Q-Learning
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Reminder : Policy Iteration

1 Let π0 be any stationary policy
2 At each iteration k = 1, 2, . . . ,K

➜ Policy evaluation : given πk−1, compute Vk = V πk−1 .
➜ Policy improvement : compute the greedy policy

πk(s) ∈ argmax
a∈A

[
r(s, a) + γEs′∼p(·|s,a)[Vk−1(s

′)]
]
.

3 Return the last policy πK

▶ Problem : we saw how to approximately perform policy evaluation,
how about policy improvement ?

➜ work with Q-values directly to make policy improvement easy !
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LSTD-Q

LSTD-Q : a variant of LSTD aimed at estimating directly Qπ

Qθ(s, a) = θ⊤ϕ(s, a)

The solution to
Qθ = ΠF,νT

πQθ

can similarly be approximated by solving a linear system.

{
An = An−1 + ϕ(sn, an)(ϕ(sn, an)− γϕ(sn+1, π(sn+1)))

⊤

bn = bn−1 + ϕ(sn, an)rn

θLSTD-Qn = A−1
n bn

➜ The resulting algorithm is Least-Squares Policy Iteration (LSPI)
[Lagoudakis and Parr, 2003]
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Reminder : Value Iteration

1 Let Q0 be any action-value function

2 At each iteration k = 1, 2, . . . ,K

Qk(s, a) = T ⋆Qk−1(s, a)

= r(s, a) + Es′∼p(·|s,a)

[
max
a′∈A

Qk−1(s
′, a′)

]
3 Return the greedy policy

πK (s) ∈ argmax
a∈A

QK (s, a).

➜ Problem : how can we approximate T ⋆Qk ?

➜ Problem : does value iteration still work with such an
approximation ?
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Fitted-Q Iteration

Input : number of iterations K , number of samples per iteration n,
Initial function Q0 ∈ F , sampling distribution ρ,
Approximation space F , loss function ℓ

1 for k = 1, . . . ,K do
2 Draw n samples (si , ai ) ∼ ρ
3 Perform n transitions ri , s

′
i = step(si , ai )

4 Compute the targets yi = ri + γmaxa Qk−1(s
′
i , a)

5 From the training dataset Dk = {((si , ai ), yi )1≤i≤n}, solve the
empirical risk minimization problem :6

f ∈ argmin
f∈F

1

n

n∑
i=1

ℓ (yi , f (si , ai ))

7 Set Qk = f (with clipping if f (s, a) /∈ [−Rmax

1−γ ;
Rmax

1−γ ]).

8 end
Return: π = greedy(QK )

▶ ERM can be replaced by other possibly non-parameteric regression
techniques (decision trees, k-nn, . . .)
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Linear Fitted Q-Iteration

Input : number of iterations K , number of samples per iteration n,
Initial function Q0 ∈ F , sampling distribution ρ,
Approximation space F , loss function ℓ

1 for k = 1, . . . ,K do
2 Draw n samples (si , ai ) ∼ ρ
3 Perform n transitions ri , s

′
i = step(si , ai )

4 Compute the targets yi = ri + γmaxa Qk−1(s
′
i , a)

5 From the training dataset Dk = {((si , ai ), yi )1≤i≤n}, solve the
least squares problem :6

θk ∈ argmin
θ∈Rd

1

n

n∑
i=1

(
yi − θ⊤ϕ(si , ai )

)2
7 Set Qk(s, a) = θ⊤k ϕ(s, a) (with clipping).

8 end
Return: π = greedy(QK )
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Linear Fitted-Q : Sampling

1 Draw n samples (si , ai )
i.i.d∼ ρ

2 Perform a transition for each of them :
s ′i ∼ p(·|si , ai ) and ri ∼ ν(si ,ai )

➜ In practice sampling can be done once before running the algorithm
(or a database of transitions can be used)

➜ The sampling distribution ρ should cover the state-action space in
all relevant regions
bla

➜ The algorithm requires call to a simulator which can simulate
independent transitions from anywhere in the state-action space

Rémy Degenne | Inria, CRIStAL - 33



Linear Fitted-Q : Sampling

1 Draw n samples (si , ai )
i.i.d∼ ρ

2 Perform a transition for each of them :
s ′i ∼ p(·|si , ai ) and ri ∼ ν(si ,ai )

➜ In practice sampling can be done once before running the algorithm
(or a database of transitions can be used)

➜ The sampling distribution ρ should cover the state-action space in
all relevant regions
bla

➜ The algorithm requires call to a simulator which can simulate
independent transitions from anywhere in the state-action space
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Linear Fitted-Q : Building the training set

3 Compute yi = ri + γmaxa Qk−1(s
′
i , a)

4 Build training set Dk = {((si , ai ), yi )1≤i≤n}

➜ Each sample yi is an unbiased estimate of T ⋆Qk−1(si , ai ) :

E[yi |si , ai ,Qk−1] = E[ri + γmax
a′

Qk−1(s
′
i , a

′)|si , ai ,Qk−1]

= r(si , ai ) + γEs′∼p(·|si ,ai )[max
a′

Qk−1(s
′, a′)]

= T ⋆Qk−1(si , ai )

➜ The problem “reduces” to standard regression

➜ A new regression problem at each iteration :
new function to fit T ⋆Qk−1 + new training set Dk
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Linear Fitted-Q : The regression problem

5 Solve the least squares problem

θk ∈ argmin
θ∈Rd

1

n

n∑
i=1

(
yi − θ⊤ϕ(si , ai )

)2

➜ standard linear regression problem with design matrix and targets

X =


ϕ(s1, a1)

⊤

ϕ(s2, a2)
⊤

. . .
ϕ(sn, an)

⊤

 ∈ Rn×d and Y =


y1
y2
. . .
yn

 ∈ Rd

whose solution is
θk =

(
X⊤X

)−1
X⊤Y .
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Linear Fitted-Q : Error bound

Theorem
Linear FQI with a space F of d features, with n samples drawn from ρ at
each iteration, returns a policy πK after K iterations which satisfies, w.p.
larger than 1− δ,

∥Q⋆ − QπK ∥µ ≤ 2γ

(1− γ)2
Cµ,ρ

[
sup
g∈F

inf
f∈F

∥T ⋆g − f ∥ρ

+O

(√
d log(n/δ)

ωn

)]

+ O

(
γK

(1− γ)2

)
.

see, e.g. [Munos and Szepesvári, 2008]
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Outline

1 From Values to Policy Learning

2 Policy Evaluation with Approximation

3 Learning the Optimal Policy : Approximate Dynamic Programming

4 Learning the Optimal Policy : Approximate Q-Learning
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A semi-gradient extension of Q-Learning

Let’s try to find θ minimizing

MSE(θ) = Eν

[
(Q⋆(s, a)− Qθ(s, a))

2
]

∇θMSE(θ) = −2Eν [(Q
⋆(s, a)− Qθ(s, a))∇θQθ(s, a)]

➜ gradient descent :

θ ← θ + αEν [(Q
⋆(s, a)− Qθ(s, a))∇θQθ(s, a)]

➜ stochastic gradient descent : if (st , at) ∼ ν,

θ ← θ + α (Q⋆(st , at)− Qθ(st , at))∇θQθ(st , at)

➜ bootstrapping : given a transition (st , at , rt , st+1),

θ ← θ + α

(
rt + γmax

b
Qθ(st+1, b)− Qθ(st , at)

)
∇θQθ(st , at)
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A semi-gradient extension of Q-Learning

Let’s try to find θ minimizing

MSE(θ) = Eν

[
(Q⋆(s, a)− Qθ(s, a))

2
]

∇θMSE(θ) = −2Eν [(Q
⋆(s, a)− Qθ(s, a))∇θQθ(s, a)]

Q-Learning update with function approximation

Given a Q-value Qθ(s, a), this semi-gradient update is{
δt = rt + γmaxb Qθt−1(st+1, b)− Qθt−1(st , at)
θt = θt−1 + αtδt∇θQθt−1(st , at)

➜ one recovers Q-Learning in the tabular case
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Negative results

TD(0) LSPI Fitted-Q Q-Learning
Linear functions

Non-linear functions ( )

▶ TD(0) is known to diverge with non-linear function approximation

▶ Q-Learning can already diverge with linear function approximation...

(see examples in [Sutton and Barto, 2018])
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Tricks to make Q-Learning work

Q-Learning update with function approximation{
δt = rt + γmaxb Qθt−1(st+1, b)− Qθt−1(st , at)
θt = θt−1 + αtδt∇θQθt−1(st , at)

Alternative view : in each step t, perform one SGD step on

L(θ) = E (s,a)∼ρ
(r ,s′)∼step(s,a)

[(
r + γmax

b
Qθt−1(s

′, b)− Qθ(s, a)

)2
]

where ρ is the current behavior policy.

Three tricks : (e.g. [Mnih et al., 2015, Hessel et al., 2018])

➜ experience replay : rely on past transisions instead of the current one

➜ mini-batches : rely on more than one transition

➜ two learning scales : do not update the target network in every round
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Deep Q Networks

Input : number of iterations T ,
minimatch size B, update frequency for the target network N,
exploration sequence (εt), stepsize (αt)
Initialize : replay buffer D ← {}, first state s1,
online network parameter θ, target network parameter θ− ← θ

1 for t = 1, . . . ,T do
2 at = argmaxaQθ(st , a) w.p. 1− εt , random action w.p. εt
3 Perform transition (rt , st+1) = step(st , at)
4 Add transition to the replay buffer D ← D ∪ {(st , at , rt , st+1)}
5 Draw a minibatch B of size B uniformly from D
6 Perform one step of online optimization on the loss function7

L(θ) =
∑

(s,a,r,s′)∈B

(
r + γmax

b
Qθ−(s ′, b)− Qθ(s, a)

)2

8 e.g. θ ← θ − αt∇θL(θ)
9 every N time steps, θ− ← θ

10 end
Return: Qθ
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Results on Atari Games

DQN was proposed in combination with

▶ a well chosen pre-processing of the state

▶ an optimized architecture for the Deep Neural Network used for the
approximator

that reaches super-human level performance on Atari games.

[video]
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https://www.youtube.com/watch?v=V1eYniJ0Rnk


Summary

In this class, we mostly saw how to scale up reinforcement learning with
Value-based methods :

▶ Fitted-Q Iteration

▶ Deep Q Networks

In the sequel, we will see :

▶ Policy-based methods (based on direct search over a policy space)

▶ Actor-critic methods (using both a policy and a value),

whose performance can also be “boosted” with Deep Learning.

We will also discuss the exploration issue : can we go beyond ε-greedy ?
(starting with very simple MDPs : multi-armed bandits)
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