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Reminder : Dynamic Programming

If the parameters of a Markov Decision Process (MDP) are known

▶ mean reward (r(s, a))(s,a)∈S×A

▶ transition probabilities (p(s ′|s, a))(s,a,s′)∈S×A×S

one can compute the optimal value V ⋆ and optimal policy π⋆ using the
fact that they satisfy the Bellman equations.

➜ Finite horizon H : V ⋆
h and π⋆

h for h ∈ {1, . . . ,H} computed using
backwards induction from

V ⋆
h (s) = max

a

[
r(s, a) +

∑
s′∈S

p(s ′|s, a)V ⋆
h+1(s

′)

]
➜ Infinite horizon with discount factor γ (our focus today) :

π⋆ is stationary and

V ⋆(s) = max
a

[
r(s, a) + γ

∑
s′∈S

p(s ′|s, a)V ⋆(s ′)

]
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➜ Finite horizon H : V ⋆
h and π⋆

h for h ∈ {1, . . . ,H} computed using
backwards induction from

V ⋆
h (s) = max

a

[
r(s, a) +

∑
s′∈S

p(s ′|s, a)V ⋆
h+1(s

′)

]
➜ Infinite horizon with discount factor γ (our focus today) :

π⋆ is stationary and

∀s ∈ S, V ⋆(s) = T ⋆ (V ⋆) (s)

One may use Value Iteration or Policy Iteration
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Reinforcement Learning

▶ r(s, a) and p(s ′|s, a) are unknown, we can only interact with the
environment and observe transitions

The RL interaction protocol :

Ht = σ (s1, a1, r1, s2, . . . , st−1, at−1, rt−1, st)

denotes the history of observations up to the beginning of round t.

At each time t, the agent

▶ selects an action at ∼ πt(st) according to some behavior policy

πt may depend on Ht

▶ observes the reward and next state{
rt ∼ ν(st ,at) such that E[rt |st , at ] = r(st , at)
st+1 ∼ p(·|st , at)
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Reinforcement Learning

For example, starting from some state s0, one may observe several
trajectories under a given policy.
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One may also :

▶ restart in different states

▶ observe a single, very long, trajectory

▶ adaptively change the behavior policy
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1 From Monte Carlo to Stochastic Approximation

2 Temporal Difference Learning for Policy Evaluation

3 Q-Learning for Finding the Optimal Policy

4 An Actor/Critic Variant
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Monte Carlo estimation of a mean

A naive way to estimate a value is to use is definition as an expectation :

V π(s) = E

[ ∞∑
t=1

γt−1rt

∣∣∣∣∣ s1 = s

]

▶ Given n (long enough) trajectories under π starting from s
(i)
1 = s,

t(i) = (s
(i)
1 , r

(i)
1 , s

(i)
2 , r

(i)
2 , . . . , s

(i)
T(i)

, r
(i)
T(i)

)

one can use the approximation

V π(s) ≃ 1

n

n∑
i=1

[ T(i)∑
t=1

γt−1r
(i)
t︸ ︷︷ ︸

i.i.d. with mean ≃Vπ(s)

]
.
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Properties

More generally, considering Zi that are i.i.d. with mean µ, one can define
the Monte-Carlo estimator

µ̂n =
1

n

n∑
i=1

Zi ,

which has nice statistical properties, like µ̂n
a.s.→ µ.

▶ Iterative rewriting

µ̂n =
n − 1

n
µ̂n−1 +

1

n
Zn

Rémy Degenne | Inria, CRIStAL - 7



Properties

More generally, considering Zi that are i.i.d. with mean µ, one can define
the Monte-Carlo estimator

µ̂n =
1

n

n∑
i=1

Zi ,

which has nice statistical properties, like µ̂n
a.s.→ µ.

▶ Iterative rewriting

µ̂n =
n − 1

n
µ̂n−1 +

1

n
Zn
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Properties

More generally, considering Zi that are i.i.d. with mean µ, one can define
the Monte-Carlo estimator

µ̂n =
1

n

n∑
i=1

Zi ,

which has nice statistical properties, like µ̂n
a.s.→ µ.

▶ Iterative rewriting

µ̂n = µ̂n−1 + αn (Zn − µ̂n−1)

for the stepsize αn = 1
n .

➜ Can we choose other stepsizes and still have µ̂n
a.s.→ µ ?
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Stochastic Approximation : Robbins-Monro

Goal : Find the solution to ϕ(x⋆) = 0 based on access to noisy function
evaluations, i.e. for every x , one can observe a random value

Y = ϕ(x) + ε,

where ε has zero mean (conditionally to previous queries).

Robbins-Monro algorithm (1951)

Given an initial x0, for all n ≥ 1

▶ query a noisy evaluation Yn = ϕ(xn−1) + εn

▶ update xn = xn−1 + αnYn

Particular case : estimate a mean µ based on i.i.d. samples Zi

ϕ(x) = µ− x and Yn = Zn − µ̂n−1

Robbins-Monro update : µ̂n = µ̂n−1 + αn(Zn − µ̂n−1).
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Rémy Degenne | Inria, CRIStAL - 8



Stochastic Approximation : Robbins-Monro

Goal : Find the solution to ϕ(x⋆) = 0 based on access to noisy function
evaluations, i.e. for every x , one can observe a random value

Y = ϕ(x) + ε,

where ε has zero mean (conditionally to previous queries).

Robbins-Monro algorithm (1951)

Given an initial x0, for all n ≥ 1

▶ query a noisy evaluation Yn = ϕ(xn−1) + εn

▶ update xn = xn−1 + αnYn

Particular case : estimate a mean µ based on i.i.d. samples Zi

ϕ(x) = µ− x and Yn = Zn − µ̂n−1

Robbins-Monro update : µ̂n = µ̂n−1 + αn(Zn − µ̂n−1).
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Convergence of the Robbins-Monro algorithm

Theorem
Let ϕ : I ⊆ R→ R. Under the following assumptions

▶ ϕ is continuous and ∀x ̸= x⋆, (x − x⋆)ϕ(x) < 0

▶ there exists C > 0 such that E[Y 2
n |xn−1] ≤ C (1 + x2n−1).

▶ the stepsizes satisfy
∞∑
n=1

αn =∞ and
∞∑
n=1

α2
n <∞ (1)

under the Robbins-Monro algorithm, one has xn
a.s→ x⋆.

Consequence : for the mean estimation problem, the sequence of iterates

µ̂n = µ̂n−1 + αn(Zn − µ̂n−1)

converges almost surely to µ for any stepsize αn satisfying (1) if
E[Z 2

n |Xn−1] is finite.
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Robbins-Monro for fixed points

Goal : Find the solution to x⋆ = T (x⋆) based on access to noisy
evaluations of T (x).

Stochastic approximation for a fixed point

Given an initial x0, for all n ≥ 1

▶ query a noisy evaluation Zn : E[Zn|xn−1] = T (xn−1).

▶ update xn = xn−1 + αn (Zn − xn−1)

➜ corresponds to the Robbins-Monro algorithm with

ϕ(x) = T (x)− x and Yn = Zn − xn−1.
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1 From Monte Carlo to Stochastic Approximation

2 Temporal Difference Learning for Policy Evaluation

3 Q-Learning for Finding the Optimal Policy

4 An Actor/Critic Variant
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Temporal Differences

Given a policy π, we want to compute V π, which satisfies

V π = Tπ(V π)

where Tπ(V )(s) = r(s, π(s)) + γ
∑

s′∈S p(s ′|s, a)V (s ′).

▶ Given a current estimate V̂ , if we generate a trajectory under π

s1, r1, s2, r2, . . . , sT , rT ,

one can produce noisy evaluations of Tπ(V̂ )(sk) for all
k ∈ {1, . . . ,T − 1} using

Zk = rk + γV̂ (sk+1).

E[Zk |V̂ , s1, r1, . . . , sk ] = r(sk , π(sk)) + γ
∑
s′∈S

p(s ′|sk , π(sk))V̂ (s ′)
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Temporal Differences

Given a policy π, we want to compute V π, which satisfies

V π = Tπ(V π)

where Tπ(V )(s) = r(s, π(s)) + γ
∑

s′∈S p(s ′|s, a)V (s ′).

▶ Given a current estimate V̂ , if we generate a trajectory under π

s1, r1, s2, r2, . . . , sT , rT ,

one can produce noisy evaluations of Tπ(V̂ )(sk) for all
k ∈ {1, . . . ,T − 1} using

Zk = rk + γV̂ (sk+1).

▶ “Robbins-Monro” update : V̂ (sk)← V̂ (sk) + α
(
Zk − V̂ (sk)

)
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Temporal Differences

Definition
The Robbins-Monro update rewrites

V̂ (sk)← V̂ (sk) + αδk(V̂ )

introducing the k-th temporal difference (or TD error) :

δk(V̂ ) := rk + γV̂ (sk+1)− V̂ (sk).

▶ Interpretation :

δk(V̂ ) := rk + γV̂ (sk+1)︸ ︷︷ ︸
new estimate

− V̂ (sk)︸ ︷︷ ︸
previous estimate

The value of the estimate is moved toward the value of the new
estimate, which is itself built upon V̂ .

➜ Bootstrapping !
[Sutton, 1988] Sutton, Learning to Predict by the Method of Temporal Differences, 1988
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The TD(0) algorithm

Input : π : policy, T : number of iterations, (αi (s))i∈N : stepsizes,
V0 ∈ RS : initial values, s0 ∈ S : initial state (arbitrary)

1 V ← V0, s ← s0
2 N ← 0S
3 for t = 1, . . . ,T do
4 N(s)← N(s) + 1 \\ update the number of visits of state s

5 (r , s ′) = step(s, π(s)) \\ perform a transition under π

6 V (s)← V (s) + αN(s)(s) (r + γV (s ′)− V (s))
7 s ← s ′

8 end
Return: V

(r , s ′) = step(s, π(s)) ⇔
{

r ∼ ν(s,π(s))
s ′ ∼ p(·|s, π(s))
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The TD(0) algorithm

Input : π : policy, T : number of iterations, (αi (s))i∈N : stepsizes,
V0 ∈ RS : initial values, s0 ∈ S : initial state (arbitrary)

1 V ← V0, s ← s0
2 N ← 0S
3 for t = 1, . . . ,T do
4 N(s)← N(s) + 1 \\ update the number of visits of state s

5 (r , s ′) = step(s, π(s)) \\ perform a transition under π

6 V (s)← V (s) + αN(s)(s) (r + γV (s ′)− V (s))
7 s ← s ′

8 end
Return: V

➜ tuning the stepsizes ?
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The TD(0) algorithm

Theorem

If the step-size (also called learning rate) satisfy the Robbins-Monro
conditions in all state s :

∞∑
i=1

αi (s) = +∞ and
∞∑
i=1

(αi (s))
2
< +∞

and all states are visited infinitely often, then

lim
T→∞

V̂T = V π,

where V̂T denotes the output of TD(0) after T iterations.

▶ Typical choice : αi (s) =
1
iβ

for β ∈ (1/2, 1].

V̂t(s) = V̂t−1(s) +
1

Nt(s)β

(
r + γV̂t−1(s

′)− V̂t−1(s)
)

with Nt(s) the number of visits of s up to the t-th iteration.
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Monte-Carlo with Temporal Differences

Incremental Monte-Carlo for the estimation of

V π(s1) = Eπ

[ ∞∑
t=1

γt−1rt

∣∣∣∣∣ s1
]

based on n trajectories starting in s1 :

. . .

0

(1)
1

(i)
1

(i)
2

(i)
T(i)

(n)
2

(1)
2

s(1)T(1)

(n)
T(n)

S

S

S S S

S S S

S

r

(n)
0

(1)
0

r
r

r r r

r r

(1)
1

(1)

(i)

(n)

T(1)-1

T(i)-1

T(n)-1

(i)
1

r

(i)
0

(n)
1

(n)
1

Update after the i-th trajectory :

V̂i (s1) = V̂i−1(s1) + αi

T (i)∑
t=1

γt−1r
(i)
t − V̂i−1(s1)
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Update after the i-th trajectory :→ rewrites with the temporal differences

V̂i (s1) = V̂i−1(s1)+αi

T (i)−1∑
t=1

γt−1δ
(i)
t (V̂i−1) + γT (i)−1

(
r
(i)
T − V̂i−1(sT (i))

)
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Monte-Carlo with Temporal Differences

V̂i (s1) ≃ V̂i−1(s1) + αi

T (i)−1∑
t=1

γtδ
(i)
t (V̂i−1)


Limitation of naive Monte-Carlo :

▶ performing a full trajectory is needed before the update

▶ we only update the value of the initial state s1

Extension :

➜ update the values of multiple states after each trajectory

➜ online updates, after each transition
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Why update multiple states ?

trajectory starting from s0=s1
(i)

trajectory starting from s0=s1
(i)

trajectory starting from s0=s2
(n)

. . .

0

(1)
1

(i)
1

(i)
2

(i)
T(i)

(n)
2

(1)
2

s(1)
T(1)

(n)
T(n)

S

S

S S S

S S S

S

r

(n)
0

(1)
0

r
r

r r r

r r

(1)
1

(1)

(i)

(n)

T(1)-1

T(i)-1

T(n)-1

(i)
1

r

(i)
0 . . .

. . .
(n)
1

(n)
1
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Every visit Monte-Carlo

Every visits Monte-Carlo (a.k.a. TD(1)) : after the i-th trajectory,
instead of updating only V̂ (s1), for all k = T (i) − 1 down to 1,

V̂
(
s
(i)
k

)
← V̂

(
s
(i)
k

)
+ αi

(
s
(i)
k

)T (i)∑
t=k

γt−k r
(i)
t − V̂

(
s
(i)
k

)
Remarks :

▶ multiple updates of states visited more than once in the trajectory

▶ first visit variant : update s
(i)
k only is s

(i)
k /∈ {s(i)1 , . . . , s

(i)
k−1}
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Remarks :
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TD methods for learning the optimal policy ?

TD methods permit to approximately compute V π for a given policy π

➜ can we use them to get to π⋆ ?

Hope : policy evaluation is a central ingredient in Policy Iteration

π0 → V π0→ π1 = greedy(V π0)→ V π1→ π2 = greedy(V π1)→ V π2→ · · · → π⋆

Limitation : the policy improvement step cannot be performed without
the knowledge of the MDP parameters

πk+1 = greedy (V πk )

⇔ πk+1(s) = argmax
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s ′|s, a)V πk (s ′)

]

Other possibility : work directly with Q-values !
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Reminder : Q-values

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s ′|s, a)V π(s ′)

Q⋆(s, a) = max
π

Qπ(s, a)

Properties
1 Q⋆ statisfies the Bellman equations

Q⋆(s, a) = r(s, a) + γ
∑
s′∈S

p(s ′|s, a) max
a′∈A

Q⋆(s ′, a′)

2 V ⋆(s) = Q⋆(s, π⋆(s))

3 π⋆ = greedy(Q⋆), i.e. π⋆(s) = argmaxa∈A Q⋆(s, a)

➜ New goal : Learning Q⋆
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A stochastic approximation scheme for Q⋆

▶ Q⋆ also satisfies a fixed point equation : Q⋆ = T ⋆(Q⋆) where

T ⋆(Q)(s, a) = r(s, a) + γ
∑
s′∈S

p(s ′|s, a) max
a′∈A

Q(s ′, a′).

▶ Noisy evaluations of T ⋆(Q)(sk , ak) along a trajectory :

Zk = rk + γ max
a′∈A

Q(sk+1, a
′)

satisfies E[Zk |Hk , ak ] = T ⋆(Q)(sk , ak).
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)
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Q-Learning

Input : T : number of iterations, (αi (s, a))i∈N : step-sizes,
Q0 ∈ RS×A : initial Q-values, s0 ∈ S : initial state (arbitrary)
πt : behavior policy

1 Q ← Q0, s ← s0
2 N ← 0S×A

3 for t = 1, . . . ,T do
4 a ∼ πt(s) \\ choose an action under the behavior policy

5 N(s, a)← N(s, a) + 1 \\ update the number of visits of (s, a)

6 (r , s ′) = step(s, a) \\ perform a transition

7 Q(s, a)← Q(s, a) + αN(s,a)(s, a) (r + γmaxb Q(s ′, b)− Q(s, a))
8 s ← s ′

9 end
Return: Q, π = greedy(Q)

[Watkins, 1989]
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Q-Learning

Theorem

It the step-size (also called learning rate) satisfy the Robbins-Monro
conditions in all state action pair (s, a) :

∞∑
i=1

αi (s, a) = +∞ and
∞∑
i=1

(αi (s, a))
2
< +∞

and all states-action pairs are visited infinitely often , then

lim
T→∞

Q̂T = Q⋆,

where Q̂T denotes the output of T iterations of Q-Learning.

➜ typical step-sizes choice : αi (s, a) =
1
iβ

with β ∈ (1/2, 1].
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Behavior Policy

▶ Constraint : all state-action pairs need to be visited infinitely often

πt(s) = U(A) → at chosen uniformly at random?

▶ Idea : we care about π⋆, we need to refine our estimate of Q⋆ in the
pairs (s, π⋆(s)) / we may want to maximize rewards while learning

πt = greedy
(
Q̂t−1

)
?

ε-greedy exploration [Sutton and Barto, 2018]

The ε-greedy policy performs the following :

➜ with probability ε, select at ∼ U(A)
➜ with probability 1− ε, select at = argmax

a∈A
Q̂t(st , a)

➜ tends to the greedy policy when ε→ 0
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Behavior Policy

▶ Constraint : all state-action pairs need to be visited infinitely often

πt(s) = U(A) → at chosen uniformly at random?

▶ Idea : we care about π⋆, we need to refine our estimate of Q⋆ in the
pairs (s, π⋆(s)) / we may want to maximize rewards while learning

πt = greedy
(
Q̂t−1

)
?

Boltzmann (or softmax) exploration [Sutton and Barto, 2018]

The softmax policy with temperature τ is given by

(πt(s))a =
exp(Q̂t(s, a)/τ)∑

a′∈A exp(Q̂t(s, a′)/τ)
and at ∼ πt(st).

➜ tends to the greedy policy when τ → 0
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In practice

▶ Q-Learning (and more generaly TD methods) can be very slow to
converge...
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1 From Monte Carlo to Stochastic Approximation

2 Temporal Difference Learning for Policy Evaluation

3 Q-Learning for Finding the Optimal Policy

4 An Actor/Critic Variant
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The Actor/Critic architecture

▶ the actor : update its policy to improve the value given by the critic

▶ the critic : evaluates the actor’s policy

source : [Szepesvári, 2010]
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Generalized Policy Iteration

Policy Iteration is an extreme example of an Actor/Critic architecture :

▶ the actor : “acts” with π = greedy(V ) where V is the value
provided by the critic

▶ the critic : computes V π where π is the current actor’s policy

➜ Actor/Critic is also referred to as Generalized Policy Iteration

[Sutton and Barto, 2018]

There are many algorithms of this type !
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Generalized Policy Iteration

Policy Iteration is an extreme example of an Actor/Critic architecture :

▶ the actor : performs policy improvement
bla

▶ the critic : performs policy evaluation

➜ Actor/Critic is also referred to as Generalized Policy Iteration

[Sutton and Barto, 2018]

There are many algorithms of this type !
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An example : the SARSA algorithm

▶ The critic

After observing the actor’s recent behavior (st , at , r t , st+1, at+1), update

Q̂(st , at)← Q̂(st , at) + α
(
rt + γQ̂(st+1, at+1)− Q̂(st , at)

)
State Action Reward State Action (SARSA) update

➜ if the actor is following a fixed policy π (at = π(st)), SARSA=TD(0)

▶ The actor : moves its behavior policy towards being greedy with
respect to the Q-value provided by the critic, e.g.

➜ ε-greedy policy
➜ softmax policy with temperature τ
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Q-Learning versus SARSA

The update rules of the two algorithms are close but not identical :

▶ Q-Learning :

Q̂(st , at)← Q̂(st , at) + α
(
rt + γmax

a′
Q̂(st+1, a

′)− Q̂(st , at)
)

▶ SARSA :

Q̂(st , at)← Q̂(st , at) + α
(
rt + γQ̂(st+1, at+1)− Q̂(st , at)

)
Both aim at learning the target policy π⋆(s) = argmaxa Q

⋆(s, a).

▶ Q-Learning converges for any behavior policy (exploring enough)
off-policy learning

▶ for SARSA the bahavior policy is close to the estimated target policy
on-policy learning
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Q-Learning versus SARSA

An example from [Sutton and Barto, 2018] : Q-Learning and SARSA
used with ε-greedy exploration with ε = 0.1.

Observation : SARSA converges to a sub-optimal safer policy that yield
more reward during learning, while Q-Learning converges to the optimal
policy, while falling often from the cliff during learning

(if ε → 0, SARSA would also converge to the optimal policy)
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Szepesvári, C. (2010).

Algorithms for reinforcement learning.

Synthesis lectures on artificial intelligence and machine learning, 4(1) :1–103.

Watkins, C. J. C. H. (1989).

Learning from delayed rewards.


	From Monte Carlo to Stochastic Approximation
	Temporal Difference Learning for Policy Evaluation
	Q-Learning for Finding the Optimal Policy
	An Actor/Critic Variant

