Sequential Decision Making

Lecture 4.5 : Summary of the first four courses

Rémy Degenne (remy.degenne@inria.fr)

Centrale Lille, 2023/2024

Markov Decision Process

A MDP is parameterized by a tuple (S, A, R, P) where

- \triangleright S is the state space
- $ightharpoonup \mathcal{A}$ is the action space
- ▶ $R = (\nu_{(s,a)})_{(s,a) \in S \times A}$ where $\nu_{(s,a)} \in \Delta(\mathbb{R})$ is the reward distribution for the state-action pair (s,a)
- ▶ $P = (p(\cdot|s, a))_{(s,a) \in S \times A}$ where $p(\cdot|s, a) \in \Delta(S)$ is the transition kernel associated to the state-action pair (s, a)

In each (discrete) decision time t = 1, 2, ..., a learning agent

- selects an action a_t based on his current state s_t
 (or possibly all the previous observations),
- ightharpoonup gets a reward $r_t \sim \nu_{(s_t,a_t)}$
- lacktriangleright makes a transition to a new state $s_{t+1} \sim p(\cdot|s_t,a_t)$

[Bellman 1957, Howard 1960, Blackwell 70s...]

Markov Decision Process

A MDP is parameterized by a tuple (S, A, R, P) where

- \triangleright \mathcal{S} is the state space
- \triangleright \mathcal{A} is the action space
- ▶ $R = (\nu_{(s,a)})_{(s,a) \in S \times A}$ where $\nu_{(s,a)} \in \Delta(\mathbb{R})$ is the reward distribution for the state-action pair (s,a)
- ▶ $P = (p(\cdot|s, a))_{(s,a) \in S \times A}$ where $p(\cdot|s, a) \in \Delta(S)$ is the transition kernel associated to the state-action pair (s, a)

Goal : (made more precise later) select actions so as to maximize some notion of *expected* cumulated rewards

Mean reward of action a in state s

$$r(s,a) = \mathbb{E}_{R \sim \nu_{(s,a)}}[R]$$

Different Markov Decision Problems

Overall goal : learn the optimal policy π^* associated to some MDP parameterized by r(s, a) and $p(\cdot|s, a)$ for $(s, a) \in \mathcal{S} \times \mathcal{A}$.

Different contexts:

- lacktriangle Small state space \mathcal{S} , known dynamics
- 2 Small state space S, unknown dynamics
- **3** Large state space S, known dynamics
- **1** Large state space S, unknown dynamics

Value and policy

Value of a policy:

- $V^{\pi}(s) = \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_{t} \middle| s_{1} = s \right] \text{ and }$ $Q^{\pi}(s, a) = \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_{t} \middle| s_{1} = s, a_{1} = a \right].$
- $V^*(s) = V^{\pi^*}(s) = \max_{\pi} V^{\pi}(s)$ and $Q^*(s, a) = Q^{\pi^*}(s, a) = \max_{\pi} Q^{\pi}(s, a)$.
- $V^{\pi} = \mathbb{E}_{a \sim \pi(s)}[Q^{\pi}(s,a)].$

Greedy policy:

- ▶ greedy(V) = $\operatorname{argmax}_{a \in \mathcal{A}} \left(r(s, a) + \gamma \mathbb{E}_{s' \sim p(\cdot | s, a)} \left[V(s') \right] \right)$
- ▶ greedy(Q) = $\operatorname{argmax}_{a \in \mathcal{A}} Q(s, a)$
- $lacktriangledown \pi^* = \operatorname{greedy}(V^*) \text{ and } \pi^* = \operatorname{greedy}(Q^*)$.

Bellman equations and operators

The value of a policy satisfies a **Bellman equation**, written with the **Bellman operator**

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim p(\cdot | s, a)} \left[V(s') \right] \right] ,$$

$$V^{\pi} = T^{\pi} V^{\pi} .$$

Similar equations and operators for Q^{π}, V^*, Q^* .

Properties of V^{π} and T^{π} :

- $ightharpoonup T^{\pi}$ is a γ -contraction
- $ightharpoonup V^{\pi}$ is the unique fixed point
- $ightharpoonup V_{n+1} = T^{\pi}V_n$ tends to V^{π} .

Similar properties for Q^{π}, V^*, Q^* .

Goals

Policy evaluation

Given a policy π , return V^{π} (or Q^{π})

Often : find a "good enough" approximation of V^{π} .

Finding the best policy

Find $\pi^* = \operatorname{argmax}_{\pi} V^{\pi} = \operatorname{argmax}_{\pi} Q^{\pi}$.

Property : there exists a deterministic π^* , given by $\pi^* = \operatorname{greedy}(V^*)$ and $\pi^* = \operatorname{greedy}(Q^*)$.

Often : find a policy π which is "close enough" to π^* .

Small MDP, known dynamics

Solve the Bellman equation for policy evaluation : $V^{\pi} = (\mathbf{I} - \gamma \mathbf{P})^{-1} \mathbf{r}$.

Value iteration for policy evaluation or finding the best policy :

- Iterate $V_{n+1} = T^{\pi} V_n$ (resp. $V_{n+1} = T^* V_n$)
- **2** Stop when $||V_{n+1} T^{\pi}V_n||$ is small

Then if we are iterating with T^* to find the best policy : return $\pi = \operatorname{greedy}(V_n)$.

Policy iteration for finding the best policy:

- Use policy evaluation to find V^{π_n}
- **2** Perform policy improvement : $\pi_{n+1} = \text{greedy}(V^{\pi_n})$.

Both can also be performed with Q instead of V. (Advantages? Drawbacks?)

Small MDP, unknown dynamics

Main ideas: Robbins-Monro estimation and temporal differences.

TD(0) for policy evaluation

$$\hat{V}(s_k) \leftarrow \hat{V}(s_k) + \alpha_{N(s_k)}(s_k)\delta(s_k) \text{ where}$$

$$\delta(s_k) = r_k + \gamma \hat{V}(s_{k+1}) - \hat{V}(s_k) \text{ and } (r_k, s_{k+1}) = \text{step}(s_k, \pi).$$

Parallel Robbins-Monro on each state. \hat{V} converges to V^{π} (under suitable conditions on α , etc.).

Q-Learning for finding the best policy

- ▶ $Q(s, a) \leftarrow Q(s, a) + \alpha_{N(s,a)}(s, a) (r + \gamma \max_b Q(s', b) Q(s, a))$ where (r, s') = step(s, a)
- ▶ Return $Q, \pi = \text{greedy}(Q)$.

Parallel Robbins-Monro on each state-action pair. Q converges to Q^* . Works for any behaviour policy, provided it explores enough.

Both are modified value iteration / policy iteration, with R-M and TD techniques to deal with unknown dynamics.

Remy Degenne | Inria, CRISTAL

Large MDP

Function approximation. Since $\mathcal{F}(\mathcal{S}, \mathbb{R})$ is too large, introduce a (parametric) set of functions \mathcal{F}_V and look for best V in \mathcal{F}_V . Ex : functions representable by a given neural network.

Policy evaluation

- lacksquare Minimize $ext{MSVE}_{
 u}(V) = \mathbb{E}_{s \sim
 u} \left[\left(V^{\pi}(s) V(s) \right)^2 \right].$
- ▶ Use TD(0) semi-gradient. Converges to θ_{TD}
- ▶ Or : estimate the solution directly with LSTD, using that $A\theta_{TD} = b$ for some A, b (linear approximation). Variant for Q: LSTD-Q.

Finding the best policy

- ► LSPI : policy iteration using LSTD-Q for policy evaluation
- ▶ Fitted Q-iteration : value iteration for Q, with regression to estimate T^*Q from samples
- Approximate Q-learning : use semi-gradient updates for Q.

And more to come, not value-based.