Sequential Decision Making Lecture 4.5 : Summary of the first four courses

Rémy Degenne (remy.degenne@inria.fr)

Centrale Lille, 2022/2023

Evaluation

TP : the second practical session (January 3rd) will be evaluated.

Project : reading, understanding and explaining a research paper

- Explain the context. You'll need to read parts of one or two of the references.
- Explain the goal of the paper.
- Present the contributions and the limitations of the method. Be critical.
- If possible, implement the algorithm described yourself and report your own findings.

Outcome : a short report (approximately 8 pages).

Good project : relate the paper to others, present your appreciation of the method, evaluate the contributions critically (possibly by doing your own experiments).

Bad project : Rephrase the paper or worse, copy-paste it. Don't do that.

Evaluation

Project : reading, understanding and explaining a research paper

Outcome : a short report (approximately 8 pages).

Good project : relate the paper to others, present your appreciation of the method, evaluate the contributions critically (possibly by doing your own experiments).

Bad project : Rephrase the paper or worse, copy-paste it. Don't do that.

- Up to two students per project
- ▶ Deadline for choosing a project : December 16.
- ▶ Deadline : January 26, 11 :59pm.
- Send it by email to remy.degenne@inria.fr. If you don't have a reply by January 27, noon, send it again.

More details on the website.

Markov Decision Process

A MDP is parameterized by a tuple (S, A, R, P) where

- \blacktriangleright S is the state space
- \mathcal{A} is the action space
- R = (ν_(s,a))_{(s,a)∈S×A} where ν_(s,a) ∈ Δ(ℝ) is the reward distribution for the state-action pair (s, a)
- P = (p(·|s, a))_{(s,a)∈S×A} where p(·|s, a) ∈ Δ(S) is the transition kernel associated to the state-action pair (s, a)

In each (discrete) decision time t = 1, 2, ..., a learning agent

- selects an action a_t based on his current state s_t (or possibly all the previous observations),
- ▶ gets a reward $r_t \sim \nu_{(s_t,a_t)}$
- ▶ makes a transition to a new state $s_{t+1} \sim p(\cdot|s_t, a_t)$

[Bellman 1957, Howard 1960, Blackwell 70s...]

Markov Decision Process

A MDP is parameterized by a tuple $(\mathcal{S}, \mathcal{A}, R, P)$ where

- \blacktriangleright S is the state space
- \mathcal{A} is the action space
- R = (ν_(s,a))_{(s,a)∈S×A} where ν_(s,a) ∈ Δ(ℝ) is the reward distribution for the state-action pair (s, a)
- P = (p(·|s, a))_{(s,a)∈S×A} where p(·|s, a) ∈ Δ(S) is the transition kernel associated to the state-action pair (s, a)

Goal : (made more precise later) select actions so as to maximize some notion of *expected* cumulated rewards

Mean reward of action *a* in state *s*

$$r(s,a) = \mathbb{E}_{R \sim \nu_{(s,a)}}[R]$$

Different Markov Decision Problems

Overall goal : learn the optimal policy π^* associated to some MDP parameterized by r(s, a) and $p(\cdot|s, a)$ for $(s, a) \in S \times A$.

Different contexts :

- ${f O}$ Small state space ${\cal S}$, unknown dynamics
- Large state space S, known dynamics
- Large state space S, unknown dynamics

Value and policy

Value of a policy :

•
$$V^{\pi}(s) = \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \middle| s_1 = s \right]$$
 and
 $Q^{\pi}(s, a) = \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \middle| s_1 = s, a_1 = a \right].$
• $V^*(s) = V^{\pi^*}(s) = \max_{\pi} V^{\pi}(s)$ and
 $Q^*(s, a) = Q^{\pi^*}(s, a) = \max_{\pi} Q^{\pi}(s, a).$
• $V^{\pi} = \mathbb{E}_{a \sim \pi(s)} [Q^{\pi}(s, a)].$

Greedy policy :

► greedy(V) = argmax_{a∈A} $\left(r(s, a) + \gamma \mathbb{E}_{s' \sim p(\cdot|s, a)} \left[V(s') \right] \right)$

▶ greedy(
$$Q$$
) = argmax_{a∈A} $Q(s, a)$

• $\pi^* = \operatorname{greedy}(V^*)$ and $\pi^* = \operatorname{greedy}(Q^*)$.

Bellman equations and operators

The value of a policy satisfies a **Bellman equation**, written with the **Bellman operator**

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim p(\cdot|s, a)} \left[V(s') \right] \right] ,$$

$$V^{\pi} = T^{\pi} V^{\pi} .$$

Similar equations and operators for Q^{π}, V^*, Q^* .

Properties of V^{π} and T^{π} :

- \blacktriangleright T^{π} is a γ -contraction
- ▶ V^{π} is the unique fixed point

 $\triangleright V_{n+1} = T^{\pi}V_n \text{ tends to } V^{\pi}.$

Similar properties for Q^{π}, V^*, Q^* .

Goals

Policy evaluation

```
Given a policy \pi, return V^{\pi} (or Q^{\pi})
```

Often : find a "good enough" approximation of V^{π} .

Finding the best policy

Find $\pi^* = \operatorname{argmax}_{\pi} V^{\pi} = \operatorname{argmax}_{\pi} Q^{\pi}$.

Property : there exists a deterministic π^* , given by $\pi^* = \text{greedy}(V^*)$ and $\pi^* = \text{greedy}(Q^*)$. Often : find a policy π which is "close enough" to π^* .

Small MDP, known dynamics

Solve the Bellman equation for policy evaluation : $V^{\pi} = (\mathbf{I} - \gamma \mathbf{P})^{-1}\mathbf{r}$.

Value iteration for policy evaluation or finding the best policy :

• Iterate
$$V_{n+1} = T^{\pi} V_n$$
 (resp. $V_{n+1} = T^* V_n$)

2 Stop when
$$||V_{n+1} - T^{\pi}V_n||$$
 is small

Then if we are iterating with T^* to find the best policy : return $\pi = \operatorname{greedy}(V_n)$.

Policy iteration for finding the best policy :

- Use policy evaluation to find V^{π_n}
- **2** Perform policy improvement : $\pi_{n+1} = \operatorname{greedy}(V^{\pi_n})$.

Both can also be performed with Q instead of V. (Advantages? Drawbacks?)

Small MDP, unknown dynamics

Main ideas : Robbins-Monro estimation and temporal differences.

TD(0) for policy evaluation

$$\hat{V}(s_k) \leftarrow \hat{V}(s_k) + \alpha_{N(s_k)}(s_k)\delta(s_k) \text{ where} \\ \delta(s_k) = r_k + \gamma \hat{V}(s_{k+1}) - \hat{V}(s_k) \text{ and } (r_k, s_{k+1}) = \operatorname{step}(s_k, \pi).$$

Parallel Robbins-Monro on each state. \hat{V} converges to V^{π} (under suitable conditions on α , etc.).

Q-Learning for finding the best policy

►
$$Q(s, a) \leftarrow Q(s, a) + \alpha_{N(s,a)}(s, a) (r + \gamma \max_{b} Q(s', b) - Q(s, a))$$

where $(r, s') = \operatorname{step}(s, a)$

• Return
$$Q, \pi = \text{greedy}(Q)$$
.

Parallel Robbins-Monro on each state-action pair. Q converges to Q^* . Works for any behaviour policy, provided it explores enough.

Both are modified value iteration / policy iteration, with R-M and TD techniques to deal with unknown dynamics. Rémy Degenne Inria, CRIStAL

Large MDP

Function approximation. Since $\mathcal{F}(\mathcal{S}, \mathbb{R})$ is too large, introduce a (parametric) set of functions \mathcal{F}_V and look for best V in \mathcal{F}_V . Ex : functions representable by a given neural network.

Policy evaluation

- Minimize $MSVE_{\nu}(V) = \mathbb{E}_{s \sim \nu} \left[\left(V^{\pi}(s) V(s) \right)^2 \right].$
- ▶ Use TD(0) semi-gradient. Converges to θ_{TD}
- Or : estimate the solution directly with LSTD, using that $A\theta_{TD} = b$ for some A, b (linear approximation). Variant for Q : LSTD-Q.

Finding the best policy

- ▶ LSPI : policy iteration using LSTD-Q for policy evaluation
- ► Fitted Q-iteration : value iteration for Q, with regression to estimate T*Q from samples
- ► Approximate Q-learning : use semi-gradient updates for Q.

And more to come, not value-based.