Brownian Motion

Rémy Degenne

Peter Pfaffelhuber

May 17, 2025

Abstract Our goal is to formalize Brownian motions (or \mathbb{R}^d -valued Gaussian processes) in some generality using Mathlib.

Outline There are three main parts to this formalization:

- develop the theory of Gaussian distributions,
- build a projective family of Gaussian distributions and define its projective limit by the Kolmogorov extension theorem,
- prove the Kolmogorov-Chentsov continuity theorem.

Notation T denotes an index set (for a stochastic process). Ω is a measurable space.

Chapter 1 Auxiliary results

Mathlib contains a definition of a product measure indexed by a finite set, but does not have lemmas about integrals against such a measure.

Characteristic functions

Definition 2.1 (Characteristic function). The characteristic function of a measure μ on a normed space E is the function $E^* \to \mathbb{C}$ defined by

$$\hat{\mu}(L) = \int_E e^{iL(x)} \; d\mu(x) \; .$$

Theorem 2.2. In a separable Banach space, if two finite measures have same characteristic function, they are equal.

Proof.

Definition 2.3 (Characteristic function). The characteristic function of a measure μ on an inner product space E is the function $E \to \mathbb{C}$ defined by

$$\hat{\mu}(t) = \int_E e^{i \langle t, x \rangle} \; d\mu(x) \; .$$

This is equal to the normed space version of the characteristic function applied to the linear map $x \mapsto \langle t, x \rangle$.

Theorem 2.4. In a separable Hilbert space, if two finite measures have same characteristic function, they are equal.

Proof.

Lemma 2.5. Let μ be a measure on F and let $L \in F^*$. Then

$$\widehat{L_*\mu}(x) = \widehat{\mu}(x\cdot L) \ .$$

Proof.

Gaussian distributions

3.1 Gaussian measures

3.1.1 Real Gaussian measures

Definition 3.1 (Real Gaussian measure).

Lemma 3.2. The characteristic function of a real Gaussian measure with mean μ and variance σ^2 is given by $x \mapsto \exp\left(i\mu x - \frac{\sigma^2 x^2}{2}\right)$.

Proof.

3.1.2 Gaussian measures on a Banach space

That kind of generality is not needed for this project, but we happen to have results about Gaussian measures on a Banach space in Mathlib, so we will use them.

Let ${\cal F}$ be a separable Banach space.

Definition 3.3 (Gaussian measure). A measure μ on F is Gaussian if for every continuous linear form $L \in F^*$, the pushforward measure $L_*\mu$ is a Gaussian measure on \mathbb{R} .

Lemma 3.4. A Gaussian measure is a probability measure.

Proof.

Definition 3.5 (Centered measure). A measure μ on F is centered if for every continuous linear form $L \in F^*$, $\mu[L] = 0$.

Theorem 3.6. A finite measure μ on F is Gaussian if and only if for every continuous linear form $L \in F^*$, the characteristic function of μ at L is

$$\hat{\mu}(L) = \exp\left(i\mu[L] - \mathbb{V}_{\mu}[L]/2\right) \,,$$

in which $\mathbb{V}_{\mu}[L]$ is the variance of L with respect to μ .

Proof.

Theorem 3.7. Let μ be a finite measure on F such that $\mu \times \mu$ is invariant under the rotation of angle $-\frac{\pi}{4}$. Then there exists C > 0 such that the function $x \mapsto \exp(C||x||^2)$ is integrable with respect to μ .

Proof.

Theorem 3.8 (Fernique's theorem). For a Gaussian measure, there exists C > 0 such that the function $x \mapsto \exp(C \|x\|^2)$ is integrable.

Proof.

Lemma 3.9. A Gaussian measure μ has finite moments of all orders. In particular, there is a well defined mean $m_{\mu} := \mu[id]$, and for all $L \in F^*$, $\mu[L] = L(m_{\mu})$.

Proof.

Definition 3.10 (Covariance). The covariance bilinear form of a measure μ with finite second moment is the continuous bilinear form $C_{\mu}: F^* \times F^* \to \mathbb{R}$ with

$$C_{\mu}(L_1,L_2) = \int_x (L_1(x) - L_1(m_{\mu})) (L_2(x) - L_2(m_{\mu})) \, d\mu(x) \, .$$

A Gaussian measure has finite second moment by Lemma 3.9, hence its covariance bilinear form is well defined.

Lemma 3.11. For μ a measure on F with finite second moment and $L \in F^*$, $C_{\mu}(L, L) = \mathbb{V}_{\mu}[L]$. *Proof.*

Transformations of Gaussian measures

Lemma 3.12. Let F, G be two Banach spaces, let μ be a Gaussian measure on F and let $T: F \to G$ be a continuous linear map. Then $T_*\mu$ is a Gaussian measure on G.

Proof.

Corollary 3.13. Let μ be a Gaussian measure on F and let $c \in F$. Then the measure μ translated by c (the map of μ by $x \mapsto x + c$) is a Gaussian measure on F.

Proof.

Lemma 3.14. The convolution of two Gaussian measures is a Gaussian measure.

Proof.

3.1.3 Gaussian measures on a finite dimensional Hilbert space

Lemma 3.15. A finite measure μ on a separable Hilbert space E is Gaussian if and only if for every $t \in E$, the characteristic function of μ at t is

$$\hat{\mu}(t) = \exp\left(i\mu[\langle t, \cdot \rangle] - \mathbb{V}_{\mu}[\langle t, \cdot \rangle]/2\right) \ .$$

Proof. By Theorem 3.6, μ is Gaussian iff for every continuous linear form $L \in E^*$, the characteristic function of μ at L is

$$\hat{\mu}(L) = \exp\left(i\mu[L] - \mathbb{V}_{\mu}[L]/2\right)$$

Every continuous linear form $L \in E^*$ can be written as $L(x) = \langle t, x \rangle$ for some $t \in E$, hence we have that μ is Gaussian iff for every $t \in E$,

$$\hat{\mu}(t) = \exp\left(i\mu[\langle t, \cdot \rangle] - \mathbb{V}_{\mu}[\langle t, \cdot \rangle]/2\right) \ .$$

Let *E* be a finite dimensional Hilbert space. We denote by $\langle \cdot, \cdot \rangle$ the inner product on *E* and by $\|\cdot\|$ the associated norm.

Definition 3.16 (Covariance matrix). The covariance matrix of a Gaussian measure μ on E is the positive semidefinite matrix Σ_{μ} with

$$\Sigma_{\mu} = \mu[(x - m_{\mu})(x - m_{\mu})^{\top}] \,.$$

Lemma 3.17. The characteristic function of a Gaussian measure μ on E is given by

$$\hat{\mu}(t) = \exp\left(i\langle t,m_{\mu}\rangle - \frac{1}{2}\langle t,\Sigma_{\mu}t\rangle\right) \ . \label{eq:exp_exp}$$

Proof. By Lemma 3.15, for every $t \in E$,

$$\hat{\mu}(t) = \exp\left(i\mu[\langle t,\cdot\rangle] - \mathbb{V}_{\mu}[\langle t,\cdot\rangle]/2\right)$$
 .

By Lemma 3.9, μ has finite first moment and $\mu[\langle t, \cdot \rangle] = \langle t, m_{\mu} \rangle$.

TODO: the second moment is also finite and we can get to the covariance matrix. \Box

Lemma 3.18. A finite measure μ on E is Gaussian if and only if there exists $m \in E$ and Σ positive semidefinite such that for all $t \in E$, the characteristic function of μ at t is

$$\hat{\mu}(t) = \exp\left(i\langle t,m\rangle - \frac{1}{2}\langle t,\Sigma t\rangle\right) \label{eq:matrix} \, ,$$

If that's the case, then $m = m_{\mu}$ and $\Sigma = \Sigma_{\mu}$.

Note that this lemma does not say that there exists a Gaussian measure for any such m and Σ . We will prove that later.

Proof. Lemma 3.17 states that the characteristic function of a Gaussian measure has the wanted form.

Suppose now that there exists $m \in E$ and Σ positive semidefinite such that for all $t \in E$, $\hat{\mu}(t) = \exp\left(i\langle t, m \rangle - \frac{1}{2}\langle t, \Sigma t \rangle\right)$.

We need to show that for all $L \in E^*$, $L_*\mu$ is a Gaussian measure on \mathbb{R} . Such an L can be written as $\langle u, \cdot \rangle$ for some $u \in E$. Let then $u \in E$. We compute the characteristic function of $\langle u, \cdot \rangle_*\mu$ at $x \in \mathbb{R}$ with Lemma 2.5:

$$\begin{split} \langle \widehat{u, \cdot \rangle_*} \mu(x) &= \widehat{\mu}(x \cdot u) \\ &= \exp\left(ix \langle u, m \rangle - \frac{1}{2} x^2 \langle u, \Sigma u \rangle\right) \,. \end{split}$$

This is the characteristic function of a Gaussian measure on \mathbb{R} with mean $\langle u, m \rangle$ and variance $\langle u, \Sigma u \rangle$. By Theorem 2.4, $\langle u, \cdot \rangle_* \mu$ is Gaussian, hence μ is Gaussian.

Definition 3.19 (Standard Gaussian measure). Let (e_1, \ldots, e_d) be an orthonormal basis of E and let μ_1, \ldots, μ_d be independent standard Gaussian measures on \mathbb{R} . The standard Gaussian measure on E is the pushforward measure of the product measure $\mu_1 \times \ldots \times \mu_d$ by the map $x \mapsto \sum_{i=1}^d x_i \cdot e_i$.

Lemma 3.20. The standard Gaussian measure on E is centered, i.e., $\mu[L] = 0$ for every $L \in E^*$. *Proof.*

Lemma 3.21. The standard Gaussian measure is a probability measure.

Proof.

Lemma 3.22. The characteristic function of the standard Gaussian measure on E is given by

$$\hat{\mu}(t) = \exp\left(-\frac{1}{2}\|t\|^2\right) \ .$$

Proof.

Lemma 3.23. The standard Gaussian measure on E is a Gaussian measure.

Proof. Since the standard Gaussian is a probability measure (hence finite), we can apply Lemma 3.18 that states that it suffices to show that the characteristic function has a particular form. That form is given by Lemma 3.22. \Box

Definition 3.24 (Multivariate Gaussian). The multivariate Gaussian measure on \mathbb{R}^d with mean $m \in \mathbb{R}^d$ and covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$, with Σ positive semidefinite, is the pushforward measure of the standard Gaussian measure on \mathbb{R}^d by the map $x \mapsto m + \Sigma^{1/2} x$. We denote this measure by $\mathcal{N}(m, \Sigma)$.

Theorem 3.25. The characteristic function of a multivariate Gaussian measure $\mathcal{N}(m, \Sigma)$ is given by

$$\hat{\mu}(t) = \exp\left(i\langle m,t\rangle - \frac{1}{2}\langle t,\Sigma t\rangle\right) \;. \label{eq:multiplicative}$$

Proof.

Lemma 3.26. A multivariate Gaussian measure is a Gaussian measure.

Proof. Apply Lemma 3.18 that states that it suffices to show that the characteristic function has a particular form. That form is given by Theorem 3.25.

3.2 Gaussian processes

Definition 3.27 (Gaussian process). A process $X : T \to \Omega \to E$ is Gaussian if for every finite subset $t_1, \ldots, t_n \in T$, the random vector $(X_{t_1}, \ldots, X_{t_n})$ has a Gaussian distribution.

Projective family of the Brownian motion

4.1 Kolmogorov extension theorem

This theorem has been formalized in the repository kolmogorov_extension4.

Definition 4.1 (Projective family). A family of measures P indexed by finite sets of T is projective if, for finite sets $J \subseteq I$, the projection from E^I to E^J maps P_I to P_J .

Definition 4.2 (Projective limit). A measure μ on E^T is the projective limit of a projective family of measures P indexed by finite sets of T if, for every finite set $I \subseteq T$, the projection from E^T to E^I maps μ to P_I .

Theorem 4.3 (Kolmogorov extension theorem). Let \mathcal{X} be a Polish space, equipped with the Borel σ -algebra, and let T be an index set. Let P be a projective family of finite measures on \mathcal{X} . Then the projective limit μ of P exists, is unique, and is a finite measure on \mathcal{X}^T . Moreover, if P_I is a probability measure for every finite set $I \subseteq T$, then μ is a probability measure.

Proof.

4.2 **Projective family of Gaussian measures**

We build a projective family of Gaussian measures indexed by \mathbb{R}_+ . In order to do so, we need to define specific Gaussian measures on finite index sets $\{t_1, \ldots, t_n\}$. We want to build a multivariate Gaussian measure on \mathbb{R}^n with mean 0 and covariance matrix $C_{ij} = \min(t_i, t_j)$ for $1 \le i, j \le n$.

First method: Gaussian increments In this method, we build the Gaussian measure by adding independent Gaussian increments.

Definition 4.4. (Gaussian increment) For $v \ge 0$, the map from \mathbb{R} to the probability measures on \mathbb{R} defined by $x \mapsto \mathcal{N}(x, v)$ is a Markov kernel. We call that kernel the *Gaussian increment* with variance v and denote it by κ_v^G .

TODO: perhaps the equality $\mathcal{N}(x, v) = \delta_x * \mathcal{N}(0, v)$ is useful to show that it is a kernel?

Definition 4.5. Let $0 \leq t_1 \leq \ldots \leq t_n$ be non-negative reals. Let μ_0 be the real Gaussian distribution $\mathcal{N}(0, t_1)$. For $i \in \{1, \ldots, n-1\}$, let κ_i be the Markov kernel from \mathbb{R} to \mathbb{R} defined by $\kappa_i(x) = \mathcal{N}(x, t_{i+1} - t_i)$ (the Gaussian increment $\kappa_{t_{i+1} - t_i}^G$). Let P_{t_1, \ldots, t_n} be the measure on \mathbb{R}^n defined by $\mu_0 \otimes \kappa_1 \otimes \ldots \otimes \kappa_{n-1}$.

TODO: explain the notation \otimes in the lemma above: κ_{n-1} takes the value at n-1 only to produce the distribution at n.

Lemma 4.6. P_{t_1,\dots,t_n} is a Gaussian measure on \mathbb{R}^n with mean 0 and covariance matrix $C_{ij} = \min(t_i, t_j)$ for $1 \leq i, j \leq n$.

Proof.

Second method: covariance matrix In this method, we prove that the matrix $C_{ij} = \min(t_i, t_j)$ is positive semidefinite, which means that there exists a Gaussian distribution with mean 0 and covariance matrix C.

Lemma 4.7. For $I = \{t_1, \dots, t_n\}$ a finite subset of \mathbb{R}_+ , let $C \in \mathbb{R}^{n \times n}$ be the matrix $C_{ij} = \min(t_i, t_j)$ for $1 \le i, j \le n$. Then C is positive semidefinite.

Proof.

Definition of the projective family and extension

Definition 4.8 (Projective family of the Brownian motion). For $I = \{t_1, ..., t_n\}$ a finite subset of \mathbb{R}_+ , let P_I^B be the multivariate Gaussian measure on \mathbb{R}^n with mean 0 and covariance matrix $C_{ij} = \min(t_i, t_j)$ for $1 \le i, j \le n$. We call the family of measures P_I^B the projective family of the Brownian motion.

Lemma 4.9. The projective family of the Brownian motion is a projective family of measures.

Proof.

Definition 4.10. We denote by TODO the projective limit of the projective family of the Brownian motion given by Theorem 4.3. This is a probability measure on $\mathbb{R}^{\mathbb{R}_+}$.

Kolmogorov-Chentsov Theorem

5.1Covers

Let (E, d_E) be a pseudometric space.

Definition 5.1 (ε -cover). A set $C \subseteq E$ is an ε -cover of a set $A \subseteq E$ if for every $x \in A$, there exists $y \in C$ such that $d_E(x, y) < \varepsilon$.

Definition 5.2 (External covering number). The external covering number of a set $A \subseteq E$ for $\varepsilon \geq 0$ is the smallest cardinality of an ε -cover of A. Denote it by $N_{\varepsilon}^{ext}(A)$.

Definition 5.3 (Internal covering number). The internal covering number of a set $A \subseteq E$ for $\varepsilon \geq 0$ is the smallest cardinality of an ε -cover of A which is a subset of A. Denote it by $N_{\varepsilon}^{int}(A)$.

Lemma 5.4. $N_{\varepsilon}^{ext}(A) \leq N_{\varepsilon}^{int}(A).$

Proof.

Lemma 5.5. For $I = [0, 1] \subseteq \mathbb{R}$, $N_{\varepsilon}^{int}(I) \leq 1/\varepsilon$.

Proof.

5.2Chaining

Lemma 5.6. Let (I, d_I) and (E, d_E) be metric spaces, and $f: I \to E$. Moreover, let $J \subseteq I$ be finite, $a, b, c \in \mathbb{R}_+$ with $a \ge 1$ and $n \in \{1, 2, ...\}$ such that $|J| \le ba^n$. Then, there is $K \subseteq J^2$ such that

$$|K| \le a|J|,\tag{5.1}$$

$$(s,t) \in K \implies d_I(s,t) \le cn, \tag{5.2}$$

$$\sup_{(s,t) \in K} |f(t) - f(s)| \le 2 \sup_{(s,t) \in K} |f(s) - f(t)|.$$
(5.3)

Proof.

$$(s,t) \in K \implies d_I(s,t) \le cn,$$
 (5.2)

$$\sup_{s,t\in J, d_{I}(s,t)\leq c} |f(t) - f(s)| \leq 2 \sup_{(s,t)\in K} |f(s) - f(t)|.$$
(5.3)

5.3 Kolmogorov-Chentsov Theorem

Theorem 5.7 (Continuous version; Kolmogorov, Chentsov). Let (I, d_I) be a compact metric space. Suppose that there is $c_1 > 0$ and $d \in \mathbb{N}$ such that for all $\varepsilon > 0$ small enough, $N_{\varepsilon}^{int}(I) \leq c_1 \varepsilon^{-d}$. Assume that $X = (X_t)_{t \in I}$ is an E-valued stochastic process and there are $\alpha, \beta, c_2 > 0$ with

$$\mathbb{E}[d_E(X_s,X_t)^\alpha] \le c_2 d_I(s,t)^{d+\beta}, \qquad s,t \in I \;.$$

Then, there exists a version $Y = (Y_t)_{t \in I}$ of X such that, for some random variables H > 0 and $K < \infty$,

$$\mathbb{P}\Big(\sup_{s\neq t, d_I(s,t)\leq H} d_E(Y_s,Y_t)/d_I(s,t)^{\gamma}\leq K\Big)=1\;,$$

for every $\gamma \in (0, \beta/\alpha)$. In particular, Y almost surely is locally Hölder of all orders $\gamma \in (0, \beta/\alpha)$, and has continuous paths.

Proof.

5.4 Brownian motion