Brownian Motion

Rémy Degenne Peter Pfaffelhuber

May 17, 2025



Abstract Our goal is to formalize Brownian motions (or R?-valued Gaussian processes) in
some generality using Mathlib.

Outline There are three main parts to this formalization:
e develop the theory of Gaussian distributions,

e build a projective family of Gaussian distributions and define its projective limit by the
Kolmogorov extension theorem,

e prove the Kolmogorov-Chentsov continuity theorem.

Notation T denotes an index set (for a stochastic process).
() is a measurable space.



Chapter 1

Auxiliary results

Mathlib contains a definition of a product measure indexed by a finite set, but does not have
lemmas about integrals against such a measure.



Chapter 2

Characteristic functions

Definition 2.1 (Characteristic function). The characteristic function of a measure p on a normed
space E is the function E* — C defined by

AL) = [ e duta)
E
Theorem 2.2. In a separable Banach space, if two finite measures have same characteristic
function, they are equal.

Proof. O

Definition 2.3 (Characteristic function). The characteristic function of a measure p on an inner
product space E' is the function E — C defined by

At = [ ) dut).
E
This is equal to the normed space version of the characteristic function applied to the linear map
x> (t, ).

Theorem 2.4. In a separable Hilbert space, if two finite measures have same characteristic
function, they are equal.

Proof. O

Lemma 2.5. Let p be a measure on F' and let L € F*. Then

pE—

Loale) = fiz - L) .

Proof. O



Chapter 3

Gaussian distributions

3.1 (Gaussian measures

3.1.1 Real Gaussian measures
Definition 3.1 (Real Gaussian measure).

Lemma 3.2. The characteristic function of a real Gaussian measure with mean p and variance
2,.2

o? is given by x > exp <iuaz - =

Proof. O

3.1.2 Gaussian measures on a Banach space

That kind of generality is not needed for this project, but we happen to have results about
Gaussian measures on a Banach space in Mathlib, so we will use them.
Let F' be a separable Banach space.

Definition 3.3 (Gaussian measure). A measure p on F' is Gaussian if for every continuous linear
form L € F*, the pushforward measure L, u is a Gaussian measure on R.

Lemma 3.4. A Gaussian measure is a probability measure.
Proof. O

Definition 3.5 (Centered measure). A measure p on F is centered if for every continuous linear
form L € F*, pu[L] = 0.

Theorem 3.6. A finite measure . on F is Gaussian if and only if for every continuous linear
form L € F*, the characteristic function of u at L is

A(L) = exp (inlL] =V, [L]/2) |
in which V,[L] is the variance of L with respect to ju.
Proof.



Theorem 3.7. Let u be a finite measure on F such that p X p is invariant under the rotation
s

of angle —Z. Then there exists C > 0 such that the function x + exp(C|x|?) is integrable with
respect to p.

Proof. O

Theorem 3.8 (Fernique’s theorem). For a Gaussian measure, there exists C > 0 such that the
function z + exp(C|z|?) is integrable.

Proof.
O

Lemma 3.9. A Gaussian measure p has finite moments of all orders. In particular, there is a
well defined mean m,, := p[id], and for all L € F*, u[L] = L(m,,).

Proof.
O

Definition 3.10 (Covariance). The covariance bilinear form of a measure p with finite second
moment is the continuous bilinear form C', : F* x F* — R with

Cu(Ly, Ly) = /(Ll(fv) — Ly(m,))(Ly(z) — Ly(m,,)) du(z) .

x

A Gaussian measure has finite second moment by Lemma 3.9, hence its covariance bilinear
form is well defined.

Lemma 3.11. For yi a measure on F' with finite second moment and L € F*, C,(L,L) =V ,[L].
Proof. O

Transformations of Gaussian measures

Lemma 3.12. Let F,G be two Banach spaces, let p be a Gaussian measure on F and let
T:F — G be a continuous linear map. Then T, p is a Gaussian measure on G.

Proof. O

Corollary 3.13. Let p be a Gaussian measure on F and let ¢ € F. Then the measure
translated by ¢ (the map of p by x +— x + ¢) is a Gaussian measure on F'.

Proof.

O
Lemma 3.14. The convolution of two Gaussian measures is a Gaussian measure.
Proof. O



3.1.3 (Gaussian measures on a finite dimensional Hilbert space

Lemma 3.15. A finite measure v on a separable Hilbert space E is Gaussian if and only if for
every t € E, the characteristic function of p at t is

A(t) = exp (iul(t, )] = V,[(t,)]/2) -

Proof. By Theorem 3.6, p is Gaussian iff for every continuous linear form L € E*, the charac-
teristic function of p at L is

(L) = exp (inlL] =V, [L]/2) .

Every continuous linear form L € E* can be written as L(x) = (¢, ) for some ¢ € E, hence we
have that p is Gaussian iff for every t € E,

fi(t) = exp (ip[(t, )] = V,[(t,)]/2) -
O

Let E be a finite dimensional Hilbert space. We denote by (-, -) the inner product on E and
by || - | the associated norm.

Definition 3.16 (Covariance matrix). The covariance matrix of a Gaussian measure y on E is
the positive semidefinite matrix X, with
S = plle—my)(@—m,)"].

Lemma 3.17. The characteristic function of a Gaussian measure p on E is given by

o , 1
() = exp (ift.m,) - 585,01 )
Proof. By Lemma 3.15, for every t € E,

A(t) = exp (iu[(t, )] = V,[(t,-)]/2) -

By Lemma 3.9, p has finite first moment and p[(t, )] = (t,m,,).
TODO: the second moment is also finite and we can get to the covariance matrix. O

Lemma 3.18. A finite measure u on E is Gaussian if and only if there exists m € E and X
positive semidefinite such that for all t € E, the characteristic function of u at t is

f(t) = exp (itt.m) — 5650 )

If that’s the case, then m =m, and ¥ =% ,.

Note that this lemma does not say that there exists a Gaussian measure for any such m and
3. We will prove that later.

Proof. Lemma 3.17 states that the characteristic function of a Gaussian measure has the wanted
form.
Suppose now that there exists m € E and ¥ positive semidefinite such that for all t € F,

la(t) = exXp (i<t7m> - %<ta Et>)



We need to show that for all L € E*, L u is a Gaussian measure on R. Such an L can be
written as (u,-) for some u € E. Let then u € E. We compute the characteristic function of
(u, ), at x € R with Lemma 2.5:

—

(u, -).p(@) = pu(z - w)

= exp (ix(u,m> — %x2<u, Eu>) .

This is the characteristic function of a Gaussian measure on R with mean (u,m) and variance

(u, Yu). By Theorem 2.4, (u,-),u is Gaussian, hence p is Gaussian. O
Definition 3.19 (Standard Gaussian measure). Let (eq,...,e;) be an orthonormal basis of E
and let pi,..., u, be independent standard Gaussian measures on R. The standard Gaussian

measure on F is the pushforward measure of the product measure p; X ... X p; by the map
T Z?:l x; - e;.

Lemma 3.20. The standard Gaussian measure on E is centered, i.e., p[L] = 0 for every L € E*.
Proof. O
Lemma 3.21. THe standard Gaussian measure is a probability measure.

Proof. O

Lemma 3.22. The characteristic function of the standard Gaussian measure on E is given by

ftt) = exp (—51?)

Proof.

Lemma 3.23. The standard Gaussian measure on E is a Gaussian measure.

Proof. Since the standard Gaussian is a probability measure (hence finite), we can apply Lemma 3.18
that states that it suffices to show that the characteristic function has a particular form. That
form is given by Lemma 3.22. O

Definition 3.24 (Multivariate Gaussian). The multivariate Gaussian measure on R? with mean
m € R? and covariance matrix ¥ € R?¥?, with ¥ positive semidefinite, is the pushforward
measure of the standard Gaussian measure on R? by the map z — m + X/2z. We denote this
measure by N(m, X).

Theorem 3.25. The characteristic function of a multivariate Gaussian measure N (m, %) is
given by

A(t) = exp (i(m, £ — %@, Et)) .

Proof.

Lemma 3.26. A multivariate Gaussian measure is a Gaussian measure.

Proof. Apply Lemma 3.18 that states that it suffices to show that the characteristic function has
a particular form. That form is given by Theorem 3.25. O



3.2 Gaussian processes

Definition 3.27 (Gaussian process). A process X : T'— Q — E is Gaussian if for every finite
subset ¢y, ...,t, € T, the random vector (X, ,..., X, ) has a Gaussian distribution.



Chapter 4

Projective family of the Brownian
motion

4.1 Kolmogorov extension theorem

This theorem has been formalized in the repository kolmogorov extension4.

Definition 4.1 (Projective family). A family of measures P indexed by finite sets of T is
projective if, for finite sets J C I, the projection from E! to £/ maps P; to P;.

Definition 4.2 (Projective limit). A measure y on ET is the projective limit of a projective
family of measures P indexed by finite sets of T if, for every finite set I C T', the projection from
ET to BT maps u to P;.

Theorem 4.3 (Kolmogorov extension theorem). Let X be a Polish space, equipped with the
Borel o-algebra, and let T be an index set. Let P be a projective family of finite measures on X .
Then the projective limit u of P exists, is unique, and is a finite measure on X'T. Moreover, if
P; is a probability measure for every finite set I C T, then u is a probability measure.

Proof. O

4.2 Projective family of Gaussian measures

We build a projective family of Gaussian measures indexed by R, . In order to do so, we need to
define specific Gaussian measures on finite index sets {¢,, ..., t,,}. We want to build a multivariate
Gaussian measure on R™ with mean 0 and covariance matrix Cij = min(t;, tj) for 1 <i,j <n.
First method: Gaussian increments In this method, we build the Gaussian measure by
adding independent Gaussian increments.

Definition 4.4. (Gaussian increment) For v > 0, the map from R to the probability measures
on R defined by = — N (x,v) is a Markov kernel. We call that kernel the Gaussian increment
with variance v and denote it by x&.

TODO: perhaps the equality N (z,v) =, * N(0,v) is useful to show that it is a kernel?


https://github.com/RemyDegenne/kolmogorov_extension4

Definition 4.5. Let 0 < t; < ... < ¢, be non-negative reals. Let p, be the real Gaussian
distribution N (0,t;). For ¢ € {1,...,n — 1}, let k,; be the Markov kernel from R to R defined
by k;(x) = N(x,t;,, —t;) (the Gaussian increment l*ﬁtcjﬂ_ti). Let P, . be the measure on R"
defined by py ® K1 ® ... @ K,,_;.

TODO: explain the notation ® in the lemma above: k,_; takes the value at n — 1 only to
produce the distribution at n.

Lemma 4.6. P, , is a Gaussian measure on R™ with mean 0 and covariance matriz C;; =
44444 7
min(t;, t;) for 1 <i,75 <n.

Proof. O

Second method: covariance matrix In this method, we prove that the matrix C;; =

min(t;,t;) is positive semidefinite, which means that there exists a Gaussian distribution with

mean 0 and covariance matrix C.

Lemma 4.7. For I = {ty,...,t,} a finite subset of R, let C € R™™™ be the matriz C;; =
min(t;, t;) for 1 <i,j <n. Then C is positive semidefinite.

Proof. O

Definition of the projective family and extension

Definition 4.8 (Projective family of the Brownian motion). For I = {¢,,...,t,} a finite subset
of R, let PP be the multivariate Gaussian measure on R™ with mean 0 and covariance matrix

C;; = min(t;,t;) for 1 <4,j < n. We call the family of measures PP the projective family of the

Brownian motion.
Lemma 4.9. The projective family of the Brownian motion is a projective family of measures.
Proof. O

Definition 4.10. We denote by TODO the projective limit of the projective family of the
Brownian motion given by Theorem 4.3. This is a probability measure on RF+.
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Chapter 5

Kolmogorov-Chentsov Theorem

5.1 Covers

Let (E,dg) be a pseudometric space.

Definition 5.1 (e-cover). A set C C E is an e-cover of a set A C F if for every « € A, there
exists y € C such that dp(z,y) < e.

Definition 5.2 (External covering number). The external covering number of a set A C E for
e > 0 is the smallest cardinality of an e-cover of A. Denote it by N*(A).

Definition 5.3 (Internal covering number). The internal covering number of a set A C E for
e > 0 is the smallest cardinality of an e-cover of A which is a subset of A. Denote it by Ni"(A).

Lemma 5.4. N (A) < Nint(A).

Proof. O
Lemma 5.5. For I =[0,1] C R, NI"(I) < 1/e.

Proof. O

5.2 Chaining

Lemma 5.6. Let (I,d;) and (E,dg) be metric spaces, and f : I — E. Moreover, let J C I be
finite, a,b,c € R, witha > 1 and n € {1,2,...} such that |J| < ba™. Then, there is K C J* such
that

K| < alJ], (5.1)
(s,t) € K = d;(s,t) < cn, .
sup  |f(t) = f(s)| <2 sup [f(s)— f(D)]. (5:3)
s,ted,d;(s,t)<c (s,t)eK
Proof. O
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5.3 Kolmogorov-Chentsov Theorem

Theorem 5.7 (Continuous version; Kolmogorov, Chentsov). Let (I,d;) be a compact metric
space. Suppose that there is ¢, > 0 and d € N such that for all e > 0 small enough, N"(I) <
cie~ 1. Assume that X = (X,),c; is an E-valued stochastic process and there are o, 3, co > 0 with

[E[dE(st Xt)a] S C2dl(svt>d+ﬂv Svt el.

Then, there ezists a version Y = (Y,)e; of X such that, for some random variables H > 0 and
K < oo,

P( swp  dp(Ye,Y)/dil(s,t) S K) =1,
s#t,d;(s,t)<H

for every v € (0, 8/a). In particular, Y almost surely is locally Holder of all orders v € (0,8/a),
and has continuous paths.

Proof.

5.4 Brownian motion

12
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