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Abstract Our goal is to formalize Brownian motions (or ℝ𝑑-valued Gaussian processes) in
some generality using Mathlib.

Outline There are three main parts to this formalization:

• develop the theory of Gaussian distributions,

• build a projective family of Gaussian distributions and define its projective limit by the
Kolmogorov extension theorem,

• prove the Kolmogorov-Chentsov continuity theorem.

Notation 𝑇 denotes an index set (for a stochastic process).
Ω is a measurable space.
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Chapter 1

Auxiliary results

Mathlib contains a definition of a product measure indexed by a finite set, but does not have
lemmas about integrals against such a measure.
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Chapter 2

Characteristic functions

Definition 2.1 (Characteristic function). The characteristic function of a measure 𝜇 on a normed
space 𝐸 is the function 𝐸∗ → ℂ defined by

̂𝜇(𝐿) = ∫
𝐸

𝑒𝑖𝐿(𝑥) 𝑑𝜇(𝑥) .

Theorem 2.2. In a separable Banach space, if two finite measures have same characteristic
function, they are equal.

Proof.

Definition 2.3 (Characteristic function). The characteristic function of a measure 𝜇 on an inner
product space 𝐸 is the function 𝐸 → ℂ defined by

̂𝜇(𝑡) = ∫
𝐸

𝑒𝑖⟨𝑡,𝑥⟩ 𝑑𝜇(𝑥) .

This is equal to the normed space version of the characteristic function applied to the linear map
𝑥 ↦ ⟨𝑡, 𝑥⟩.
Theorem 2.4. In a separable Hilbert space, if two finite measures have same characteristic
function, they are equal.

Proof.

Lemma 2.5. Let 𝜇 be a measure on 𝐹 and let 𝐿 ∈ 𝐹 ∗. Then

𝐿∗𝜇(𝑥) = ̂𝜇(𝑥 ⋅ 𝐿) .

Proof.
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Chapter 3

Gaussian distributions

3.1 Gaussian measures
3.1.1 Real Gaussian measures
Definition 3.1 (Real Gaussian measure).

Lemma 3.2. The characteristic function of a real Gaussian measure with mean 𝜇 and variance
𝜎2 is given by 𝑥 ↦ exp (𝑖𝜇𝑥 − 𝜎2𝑥2

2 ).

Proof.

3.1.2 Gaussian measures on a Banach space
That kind of generality is not needed for this project, but we happen to have results about
Gaussian measures on a Banach space in Mathlib, so we will use them.

Let 𝐹 be a separable Banach space.

Definition 3.3 (Gaussian measure). A measure 𝜇 on 𝐹 is Gaussian if for every continuous linear
form 𝐿 ∈ 𝐹 ∗, the pushforward measure 𝐿∗𝜇 is a Gaussian measure on ℝ.

Lemma 3.4. A Gaussian measure is a probability measure.

Proof.

Definition 3.5 (Centered measure). A measure 𝜇 on 𝐹 is centered if for every continuous linear
form 𝐿 ∈ 𝐹 ∗, 𝜇[𝐿] = 0.

Theorem 3.6. A finite measure 𝜇 on 𝐹 is Gaussian if and only if for every continuous linear
form 𝐿 ∈ 𝐹 ∗, the characteristic function of 𝜇 at 𝐿 is

̂𝜇(𝐿) = exp (𝑖𝜇[𝐿] − 𝕍𝜇[𝐿]/2) ,

in which 𝕍𝜇[𝐿] is the variance of 𝐿 with respect to 𝜇.

Proof.
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Theorem 3.7. Let 𝜇 be a finite measure on 𝐹 such that 𝜇 × 𝜇 is invariant under the rotation
of angle − 𝜋

4 . Then there exists 𝐶 > 0 such that the function 𝑥 ↦ exp(𝐶‖𝑥‖2) is integrable with
respect to 𝜇.

Proof.

Theorem 3.8 (Fernique’s theorem). For a Gaussian measure, there exists 𝐶 > 0 such that the
function 𝑥 ↦ exp(𝐶‖𝑥‖2) is integrable.

Proof.

Lemma 3.9. A Gaussian measure 𝜇 has finite moments of all orders. In particular, there is a
well defined mean 𝑚𝜇 ∶= 𝜇[id], and for all 𝐿 ∈ 𝐹 ∗, 𝜇[𝐿] = 𝐿(𝑚𝜇).
Proof.

Definition 3.10 (Covariance). The covariance bilinear form of a measure 𝜇 with finite second
moment is the continuous bilinear form 𝐶𝜇 ∶ 𝐹 ∗ × 𝐹 ∗ → ℝ with

𝐶𝜇(𝐿1, 𝐿2) = ∫
𝑥
(𝐿1(𝑥) − 𝐿1(𝑚𝜇))(𝐿2(𝑥) − 𝐿2(𝑚𝜇)) 𝑑𝜇(𝑥) .

A Gaussian measure has finite second moment by Lemma 3.9, hence its covariance bilinear
form is well defined.

Lemma 3.11. For 𝜇 a measure on 𝐹 with finite second moment and 𝐿 ∈ 𝐹 ∗, 𝐶𝜇(𝐿, 𝐿) = 𝕍𝜇[𝐿].
Proof.

Transformations of Gaussian measures

Lemma 3.12. Let 𝐹, 𝐺 be two Banach spaces, let 𝜇 be a Gaussian measure on 𝐹 and let
𝑇 ∶ 𝐹 → 𝐺 be a continuous linear map. Then 𝑇∗𝜇 is a Gaussian measure on 𝐺.

Proof.

Corollary 3.13. Let 𝜇 be a Gaussian measure on 𝐹 and let 𝑐 ∈ 𝐹 . Then the measure 𝜇
translated by 𝑐 (the map of 𝜇 by 𝑥 ↦ 𝑥 + 𝑐) is a Gaussian measure on 𝐹 .

Proof.

Lemma 3.14. The convolution of two Gaussian measures is a Gaussian measure.

Proof.
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3.1.3 Gaussian measures on a finite dimensional Hilbert space
Lemma 3.15. A finite measure 𝜇 on a separable Hilbert space 𝐸 is Gaussian if and only if for
every 𝑡 ∈ 𝐸, the characteristic function of 𝜇 at 𝑡 is

̂𝜇(𝑡) = exp (𝑖𝜇[⟨𝑡, ⋅⟩] − 𝕍𝜇[⟨𝑡, ⋅⟩]/2) .

Proof. By Theorem 3.6, 𝜇 is Gaussian iff for every continuous linear form 𝐿 ∈ 𝐸∗, the charac-
teristic function of 𝜇 at 𝐿 is

̂𝜇(𝐿) = exp (𝑖𝜇[𝐿] − 𝕍𝜇[𝐿]/2) .

Every continuous linear form 𝐿 ∈ 𝐸∗ can be written as 𝐿(𝑥) = ⟨𝑡, 𝑥⟩ for some 𝑡 ∈ 𝐸, hence we
have that 𝜇 is Gaussian iff for every 𝑡 ∈ 𝐸,

̂𝜇(𝑡) = exp (𝑖𝜇[⟨𝑡, ⋅⟩] − 𝕍𝜇[⟨𝑡, ⋅⟩]/2) .

Let 𝐸 be a finite dimensional Hilbert space. We denote by ⟨⋅, ⋅⟩ the inner product on 𝐸 and
by ‖ ⋅ ‖ the associated norm.

Definition 3.16 (Covariance matrix). The covariance matrix of a Gaussian measure 𝜇 on 𝐸 is
the positive semidefinite matrix Σ𝜇 with

Σ𝜇 = 𝜇[(𝑥 − 𝑚𝜇)(𝑥 − 𝑚𝜇)⊤] .

Lemma 3.17. The characteristic function of a Gaussian measure 𝜇 on 𝐸 is given by

̂𝜇(𝑡) = exp (𝑖⟨𝑡, 𝑚𝜇⟩ − 1
2⟨𝑡, Σ𝜇𝑡⟩) .

Proof. By Lemma 3.15, for every 𝑡 ∈ 𝐸,

̂𝜇(𝑡) = exp (𝑖𝜇[⟨𝑡, ⋅⟩] − 𝕍𝜇[⟨𝑡, ⋅⟩]/2) .

By Lemma 3.9, 𝜇 has finite first moment and 𝜇[⟨𝑡, ⋅⟩] = ⟨𝑡, 𝑚𝜇⟩.
TODO: the second moment is also finite and we can get to the covariance matrix.

Lemma 3.18. A finite measure 𝜇 on 𝐸 is Gaussian if and only if there exists 𝑚 ∈ 𝐸 and Σ
positive semidefinite such that for all 𝑡 ∈ 𝐸, the characteristic function of 𝜇 at 𝑡 is

̂𝜇(𝑡) = exp (𝑖⟨𝑡, 𝑚⟩ − 1
2⟨𝑡, Σ𝑡⟩) ,

If that’s the case, then 𝑚 = 𝑚𝜇 and Σ = Σ𝜇.

Note that this lemma does not say that there exists a Gaussian measure for any such 𝑚 and
Σ. We will prove that later.

Proof. Lemma 3.17 states that the characteristic function of a Gaussian measure has the wanted
form.

Suppose now that there exists 𝑚 ∈ 𝐸 and Σ positive semidefinite such that for all 𝑡 ∈ 𝐸,
̂𝜇(𝑡) = exp (𝑖⟨𝑡, 𝑚⟩ − 1

2 ⟨𝑡, Σ𝑡⟩).
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We need to show that for all 𝐿 ∈ 𝐸∗, 𝐿∗𝜇 is a Gaussian measure on ℝ. Such an 𝐿 can be
written as ⟨𝑢, ⋅⟩ for some 𝑢 ∈ 𝐸. Let then 𝑢 ∈ 𝐸. We compute the characteristic function of
⟨𝑢, ⋅⟩∗𝜇 at 𝑥 ∈ ℝ with Lemma 2.5:

̂⟨𝑢, ⋅⟩∗𝜇(𝑥) = ̂𝜇(𝑥 ⋅ 𝑢)

= exp (𝑖𝑥⟨𝑢, 𝑚⟩ − 1
2𝑥2⟨𝑢, Σ𝑢⟩) .

This is the characteristic function of a Gaussian measure on ℝ with mean ⟨𝑢, 𝑚⟩ and variance
⟨𝑢, Σ𝑢⟩. By Theorem 2.4, ⟨𝑢, ⋅⟩∗𝜇 is Gaussian, hence 𝜇 is Gaussian.

Definition 3.19 (Standard Gaussian measure). Let (𝑒1, … , 𝑒𝑑) be an orthonormal basis of 𝐸
and let 𝜇1, … , 𝜇𝑑 be independent standard Gaussian measures on ℝ. The standard Gaussian
measure on 𝐸 is the pushforward measure of the product measure 𝜇1 × … × 𝜇𝑑 by the map
𝑥 ↦ ∑𝑑

𝑖=1 𝑥𝑖 ⋅ 𝑒𝑖.

Lemma 3.20. The standard Gaussian measure on 𝐸 is centered, i.e., 𝜇[𝐿] = 0 for every 𝐿 ∈ 𝐸∗.

Proof.

Lemma 3.21. THe standard Gaussian measure is a probability measure.

Proof.

Lemma 3.22. The characteristic function of the standard Gaussian measure on 𝐸 is given by

̂𝜇(𝑡) = exp (−1
2‖𝑡‖2) .

Proof.

Lemma 3.23. The standard Gaussian measure on 𝐸 is a Gaussian measure.

Proof. Since the standard Gaussian is a probability measure (hence finite), we can apply Lemma 3.18
that states that it suffices to show that the characteristic function has a particular form. That
form is given by Lemma 3.22.

Definition 3.24 (Multivariate Gaussian). The multivariate Gaussian measure on ℝ𝑑 with mean
𝑚 ∈ ℝ𝑑 and covariance matrix Σ ∈ ℝ𝑑×𝑑, with Σ positive semidefinite, is the pushforward
measure of the standard Gaussian measure on ℝ𝑑 by the map 𝑥 ↦ 𝑚 + Σ1/2𝑥. We denote this
measure by 𝒩(𝑚, Σ).
Theorem 3.25. The characteristic function of a multivariate Gaussian measure 𝒩(𝑚, Σ) is
given by

̂𝜇(𝑡) = exp (𝑖⟨𝑚, 𝑡⟩ − 1
2⟨𝑡, Σ𝑡⟩) .

Proof.

Lemma 3.26. A multivariate Gaussian measure is a Gaussian measure.

Proof. Apply Lemma 3.18 that states that it suffices to show that the characteristic function has
a particular form. That form is given by Theorem 3.25.
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3.2 Gaussian processes
Definition 3.27 (Gaussian process). A process 𝑋 ∶ 𝑇 → Ω → 𝐸 is Gaussian if for every finite
subset 𝑡1, … , 𝑡𝑛 ∈ 𝑇 , the random vector (𝑋𝑡1

, … , 𝑋𝑡𝑛
) has a Gaussian distribution.
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Chapter 4

Projective family of the Brownian
motion

4.1 Kolmogorov extension theorem
This theorem has been formalized in the repository kolmogorov_extension4.

Definition 4.1 (Projective family). A family of measures 𝑃 indexed by finite sets of 𝑇 is
projective if, for finite sets 𝐽 ⊆ 𝐼 , the projection from 𝐸𝐼 to 𝐸𝐽 maps 𝑃𝐼 to 𝑃𝐽 .

Definition 4.2 (Projective limit). A measure 𝜇 on 𝐸𝑇 is the projective limit of a projective
family of measures 𝑃 indexed by finite sets of 𝑇 if, for every finite set 𝐼 ⊆ 𝑇 , the projection from
𝐸𝑇 to 𝐸𝐼 maps 𝜇 to 𝑃𝐼 .

Theorem 4.3 (Kolmogorov extension theorem). Let 𝒳 be a Polish space, equipped with the
Borel 𝜎-algebra, and let 𝑇 be an index set. Let 𝑃 be a projective family of finite measures on 𝒳.
Then the projective limit 𝜇 of 𝑃 exists, is unique, and is a finite measure on 𝒳𝑇 . Moreover, if
𝑃𝐼 is a probability measure for every finite set 𝐼 ⊆ 𝑇 , then 𝜇 is a probability measure.

Proof.

4.2 Projective family of Gaussian measures
We build a projective family of Gaussian measures indexed by ℝ+. In order to do so, we need to
define specific Gaussian measures on finite index sets {𝑡1, … , 𝑡𝑛}. We want to build a multivariate
Gaussian measure on ℝ𝑛 with mean 0 and covariance matrix 𝐶𝑖𝑗 = min(𝑡𝑖, 𝑡𝑗) for 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

First method: Gaussian increments In this method, we build the Gaussian measure by
adding independent Gaussian increments.

Definition 4.4. (Gaussian increment) For 𝑣 ≥ 0, the map from ℝ to the probability measures
on ℝ defined by 𝑥 ↦ 𝒩(𝑥, 𝑣) is a Markov kernel. We call that kernel the Gaussian increment
with variance 𝑣 and denote it by 𝜅𝐺

𝑣 .

TODO: perhaps the equality 𝒩(𝑥, 𝑣) = 𝛿𝑥 ∗ 𝒩(0, 𝑣) is useful to show that it is a kernel?
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Definition 4.5. Let 0 ≤ 𝑡1 ≤ … ≤ 𝑡𝑛 be non-negative reals. Let 𝜇0 be the real Gaussian
distribution 𝒩(0, 𝑡1). For 𝑖 ∈ {1, … , 𝑛 − 1}, let 𝜅𝑖 be the Markov kernel from ℝ to ℝ defined
by 𝜅𝑖(𝑥) = 𝒩(𝑥, 𝑡𝑖+1 − 𝑡𝑖) (the Gaussian increment 𝜅𝐺

𝑡𝑖+1−𝑡𝑖
). Let 𝑃𝑡1,…,𝑡𝑛

be the measure on ℝ𝑛

defined by 𝜇0 ⊗ 𝜅1 ⊗ … ⊗ 𝜅𝑛−1.

TODO: explain the notation ⊗ in the lemma above: 𝜅𝑛−1 takes the value at 𝑛 − 1 only to
produce the distribution at 𝑛.

Lemma 4.6. 𝑃𝑡1,…,𝑡𝑛
is a Gaussian measure on ℝ𝑛 with mean 0 and covariance matrix 𝐶𝑖𝑗 =

min(𝑡𝑖, 𝑡𝑗) for 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Proof.

Second method: covariance matrix In this method, we prove that the matrix 𝐶𝑖𝑗 =
min(𝑡𝑖, 𝑡𝑗) is positive semidefinite, which means that there exists a Gaussian distribution with
mean 0 and covariance matrix 𝐶.

Lemma 4.7. For 𝐼 = {𝑡1, … , 𝑡𝑛} a finite subset of ℝ+, let 𝐶 ∈ ℝ𝑛×𝑛 be the matrix 𝐶𝑖𝑗 =
min(𝑡𝑖, 𝑡𝑗) for 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Then 𝐶 is positive semidefinite.

Proof.

Definition of the projective family and extension

Definition 4.8 (Projective family of the Brownian motion). For 𝐼 = {𝑡1, … , 𝑡𝑛} a finite subset
of ℝ+, let 𝑃 𝐵

𝐼 be the multivariate Gaussian measure on ℝ𝑛 with mean 0 and covariance matrix
𝐶𝑖𝑗 = min(𝑡𝑖, 𝑡𝑗) for 1 ≤ 𝑖, 𝑗 ≤ 𝑛. We call the family of measures 𝑃 𝐵

𝐼 the projective family of the
Brownian motion.

Lemma 4.9. The projective family of the Brownian motion is a projective family of measures.

Proof.

Definition 4.10. We denote by TODO the projective limit of the projective family of the
Brownian motion given by Theorem 4.3. This is a probability measure on ℝℝ+ .
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Chapter 5

Kolmogorov-Chentsov Theorem

5.1 Covers
Let (𝐸, 𝑑𝐸) be a pseudometric space.

Definition 5.1 (𝜀-cover). A set 𝐶 ⊆ 𝐸 is an 𝜀-cover of a set 𝐴 ⊆ 𝐸 if for every 𝑥 ∈ 𝐴, there
exists 𝑦 ∈ 𝐶 such that 𝑑𝐸(𝑥, 𝑦) < 𝜀.

Definition 5.2 (External covering number). The external covering number of a set 𝐴 ⊆ 𝐸 for
𝜀 ≥ 0 is the smallest cardinality of an 𝜀-cover of 𝐴. Denote it by 𝑁𝑒𝑥𝑡

𝜀 (𝐴).
Definition 5.3 (Internal covering number). The internal covering number of a set 𝐴 ⊆ 𝐸 for
𝜀 ≥ 0 is the smallest cardinality of an 𝜀-cover of 𝐴 which is a subset of 𝐴. Denote it by 𝑁 𝑖𝑛𝑡

𝜀 (𝐴).
Lemma 5.4. 𝑁𝑒𝑥𝑡

𝜀 (𝐴) ≤ 𝑁 𝑖𝑛𝑡
𝜀 (𝐴).

Proof.

Lemma 5.5. For 𝐼 = [0, 1] ⊆ ℝ, 𝑁 𝑖𝑛𝑡
𝜀 (𝐼) ≤ 1/𝜀.

Proof.

5.2 Chaining
Lemma 5.6. Let (𝐼, 𝑑𝐼) and (𝐸, 𝑑𝐸) be metric spaces, and 𝑓 ∶ 𝐼 → 𝐸. Moreover, let 𝐽 ⊆ 𝐼 be
finite, 𝑎, 𝑏, 𝑐 ∈ ℝ+ with 𝑎 ≥ 1 and 𝑛 ∈ {1, 2, ...} such that |𝐽 | ≤ 𝑏𝑎𝑛. Then, there is 𝐾 ⊆ 𝐽2 such
that

|𝐾| ≤ 𝑎|𝐽|, (5.1)
(𝑠, 𝑡) ∈ 𝐾 ⟹ 𝑑𝐼(𝑠, 𝑡) ≤ 𝑐𝑛, (5.2)

sup
𝑠,𝑡∈𝐽,𝑑𝐼(𝑠,𝑡)≤𝑐

|𝑓(𝑡) − 𝑓(𝑠)| ≤ 2 sup
(𝑠,𝑡)∈𝐾

|𝑓(𝑠) − 𝑓(𝑡)|. (5.3)

Proof.

11



5.3 Kolmogorov-Chentsov Theorem
Theorem 5.7 (Continuous version; Kolmogorov, Chentsov). Let (𝐼, 𝑑𝐼) be a compact metric
space. Suppose that there is 𝑐1 > 0 and 𝑑 ∈ ℕ such that for all 𝜀 > 0 small enough, 𝑁 𝑖𝑛𝑡

𝜀 (𝐼) ≤
𝑐1𝜀−𝑑. Assume that 𝑋 = (𝑋𝑡)𝑡∈𝐼 is an 𝐸-valued stochastic process and there are 𝛼, 𝛽, 𝑐2 > 0 with

𝔼[𝑑𝐸(𝑋𝑠, 𝑋𝑡)𝛼] ≤ 𝑐2𝑑𝐼(𝑠, 𝑡)𝑑+𝛽, 𝑠, 𝑡 ∈ 𝐼 .

Then, there exists a version 𝑌 = (𝑌𝑡)𝑡∈𝐼 of 𝑋 such that, for some random variables 𝐻 > 0 and
𝐾 < ∞,

ℙ( sup
𝑠≠𝑡,𝑑𝐼(𝑠,𝑡)≤𝐻

𝑑𝐸(𝑌𝑠, 𝑌𝑡)/𝑑𝐼(𝑠, 𝑡)𝛾 ≤ 𝐾) = 1 ,

for every 𝛾 ∈ (0, 𝛽/𝛼). In particular, 𝑌 almost surely is locally Hölder of all orders 𝛾 ∈ (0, 𝛽/𝛼),
and has continuous paths.

Proof.

5.4 Brownian motion
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